TY - JOUR
T1 - Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components
AU - Marondedze, Claudius
AU - Thomas, Ludivine
AU - Lilley, Kathryn S.
AU - Gehring, Christoph A
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to thank Marco Chiapello and Mike Deery from the Cambridge Center for Proteomics (CCP), University of Cambridge for their assistance in Mass spectrometry and data analyses discussions, Xiaolan Yu for providing Arabidopsis ecotype Columbia-0 cell suspension cultures. Funding. This work was supported by the Office of Competitive Research Grant Program from the King Abdullah University of Science and Technology (grant no. CRG3-62140383).
PY - 2020/1/21
Y1 - 2020/1/21
N2 - The spliceosome processes RNAs from a pre-RNA state to a mature mRNA thereby influencing RNA availability for translation, localization, and turnover. It consists of complex structures containing RNA-binding proteins (RBPs) essential for post-transcriptional gene expression control. Here we investigate the dynamic modifications of spliceosomal RBPs under stress and in particular drought stress. We do so by mRNA interactome capture in Arabidopsis thaliana using label free quantitation. This approach identified 44 proteins associated with the spliceosome and further 32 proteins associated with stress granules. We noted a high enrichment in the motifs RDRR and RSRSRS that are characteristic of RNA interacting proteins. Identification of splicing factors reflect direct and/or indirect stress induced splicing events that have a direct effect on transcriptome and proteome changes under stress. Furthermore, detection of stress granule components is consistent with transcriptional arrest. Identification of drought induced stress granule components is critical in determining common abiotic stress-induced foci that can have biotechnological applications. This study may therefore open ways to modify plant stress responses at a systems level through the modification of key spliceosome components.
AB - The spliceosome processes RNAs from a pre-RNA state to a mature mRNA thereby influencing RNA availability for translation, localization, and turnover. It consists of complex structures containing RNA-binding proteins (RBPs) essential for post-transcriptional gene expression control. Here we investigate the dynamic modifications of spliceosomal RBPs under stress and in particular drought stress. We do so by mRNA interactome capture in Arabidopsis thaliana using label free quantitation. This approach identified 44 proteins associated with the spliceosome and further 32 proteins associated with stress granules. We noted a high enrichment in the motifs RDRR and RSRSRS that are characteristic of RNA interacting proteins. Identification of splicing factors reflect direct and/or indirect stress induced splicing events that have a direct effect on transcriptome and proteome changes under stress. Furthermore, detection of stress granule components is consistent with transcriptional arrest. Identification of drought induced stress granule components is critical in determining common abiotic stress-induced foci that can have biotechnological applications. This study may therefore open ways to modify plant stress responses at a systems level through the modification of key spliceosome components.
UR - http://hdl.handle.net/10754/661551
UR - https://www.frontiersin.org/article/10.3389/fmolb.2019.00163/full
UR - http://www.scopus.com/inward/record.url?scp=85079069066&partnerID=8YFLogxK
U2 - 10.3389/fmolb.2019.00163
DO - 10.3389/fmolb.2019.00163
M3 - Article
C2 - 32039234
SN - 2296-889X
VL - 6
JO - Frontiers in Molecular Biosciences
JF - Frontiers in Molecular Biosciences
ER -