Abstract
Constructing photocatalytically active and stable covalent organic frameworks containing both oxidative and reductive reaction centers remain a challenge. In this study, benzotrithiophene-based covalent organic frameworks with spatially separated redox centers are rationally designed for the photocatalytic production of hydrogen peroxide from water and oxygen without sacrificial agents. The triazine-containing framework demonstrates high selectivity for H2O2 photogeneration, with a yield rate of 2111 μM h−1 (21.11 μmol h−1 and 1407 μmol g−1 h−1) and a solar-to-chemical conversion efficiency of 0.296%. Codirectional charge transfer and large energetic differences between linkages and linkers are verified in the double donor-acceptor structures of periodic frameworks. The active sites are mainly concentrated on the electron-acceptor fragments near the imine bond, which regulate the electron distribution of adjacent carbon atoms to optimally reduce the Gibbs free energy of O2* and OOH* intermediates during the formation of H2O2.
Original language | English (US) |
---|---|
Journal | Nature Communications |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Aug 28 2023 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Chemistry
- General Physics and Astronomy