TY - JOUR
T1 - Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven
AU - Phuoc, Duong
AU - Nunes, Suzana Pereira
AU - Chung, Tai-Shung
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to thank King Abdullah University of Science and Technology (KAUST) for funding this research project.
PY - 2016/8/31
Y1 - 2016/8/31
N2 - We propose multilayer membranes including (i) a thin selective polyamide (PA) layer prepared via interfacial polymerization, (ii) a poly (vinylidene fluoride) (PVDF) asymmetric porous support with high adhesion to the PA layer and high mechanical strength, (iii) a strong woven fabric, and (iv) fouling resistant porous cellulose acetate (CA) layer. The PA layer rejects solutes of the draw solution. The PVDF/woven fabric/CA (PVDF/CA) integrated layer performs as a mechanical support with unique properties for forward osmosis (FO) applications. It consists of a modified PVDF top layer suitable for the deposition of a PA layer and a highly hydrophilic bottom layer (CA) with a tunable pore size to minimize foulant deposition and intrusion onto and into the support. The experimental results using bovine serum albumin (BSA) as a model foulant show that the presence of the CA layer at the bottom of the FO membrane (PA/PVDF/CA) reduces 75% fouling propensity compared to the simple FO membrane made of PVDF, woven fabric and PA (PA/PVDF). Fouling tests with 2000 ppm oily feed faced the bottom of the FO membranes further indicate the superiority of the PA/PVDF/CA membrane compared to the PA/PVDF membrane. Moreover, the bottom CA layer can be adjusted with a flexible range of pore size, varied from sub-micron to sub-nanometer depending on the feed composition. The newly developed multilayer FO membrane has comparable performance to the state-of-the-art membrane with added tailored fouling resistance for specific wastewater feeds.
AB - We propose multilayer membranes including (i) a thin selective polyamide (PA) layer prepared via interfacial polymerization, (ii) a poly (vinylidene fluoride) (PVDF) asymmetric porous support with high adhesion to the PA layer and high mechanical strength, (iii) a strong woven fabric, and (iv) fouling resistant porous cellulose acetate (CA) layer. The PA layer rejects solutes of the draw solution. The PVDF/woven fabric/CA (PVDF/CA) integrated layer performs as a mechanical support with unique properties for forward osmosis (FO) applications. It consists of a modified PVDF top layer suitable for the deposition of a PA layer and a highly hydrophilic bottom layer (CA) with a tunable pore size to minimize foulant deposition and intrusion onto and into the support. The experimental results using bovine serum albumin (BSA) as a model foulant show that the presence of the CA layer at the bottom of the FO membrane (PA/PVDF/CA) reduces 75% fouling propensity compared to the simple FO membrane made of PVDF, woven fabric and PA (PA/PVDF). Fouling tests with 2000 ppm oily feed faced the bottom of the FO membranes further indicate the superiority of the PA/PVDF/CA membrane compared to the PA/PVDF membrane. Moreover, the bottom CA layer can be adjusted with a flexible range of pore size, varied from sub-micron to sub-nanometer depending on the feed composition. The newly developed multilayer FO membrane has comparable performance to the state-of-the-art membrane with added tailored fouling resistance for specific wastewater feeds.
UR - http://hdl.handle.net/10754/622007
UR - http://www.sciencedirect.com/science/article/pii/S0376738816314259
UR - http://www.scopus.com/inward/record.url?scp=84984820637&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2016.08.047
DO - 10.1016/j.memsci.2016.08.047
M3 - Article
SN - 0376-7388
VL - 520
SP - 840
EP - 849
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -