Dynamic mode decomposition of numerical and experimental data

Research output: Contribution to journalArticlepeer-review

4066 Scopus citations

Abstract

The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders. © 2010 Cambridge University Press.
Original languageEnglish (US)
Pages (from-to)5-28
Number of pages24
JournalJournal of Fluid Mechanics
Volume656
DOIs
StatePublished - Jan 1 2010
Externally publishedYes

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Dynamic mode decomposition of numerical and experimental data'. Together they form a unique fingerprint.

Cite this