Dynamic topological data analysis: a novel fractal dimension-based testing framework with application to brain signals

Anass B. El-Yaagoubi*, Moo K. Chung, Hernando Ombao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Topological data analysis (TDA) is increasingly recognized as a promising tool in the field of neuroscience, unveiling the underlying topological patterns within brain signals. However, most TDA related methods treat brain signals as if they were static, i.e., they ignore potential non-stationarities and irregularities in the statistical properties of the signals. In this study, we develop a novel fractal dimension-based testing approach that takes into account the dynamic topological properties of brain signals. By representing EEG brain signals as a sequence of Vietoris-Rips filtrations, our approach accommodates the inherent non-stationarities and irregularities of the signals. The application of our novel fractal dimension-based testing approach in analyzing dynamic topological patterns in EEG signals during an epileptic seizure episode exposes noteworthy alterations in total persistence across 0, 1, and 2-dimensional homology. These findings imply a more intricate influence of seizures on brain signals, extending beyond mere amplitude changes.

Original languageEnglish (US)
Article number1387400
JournalFrontiers in Neuroinformatics
Volume18
DOIs
StatePublished - 2024

Keywords

  • dynamic topological data analysis
  • epileptic seizures
  • fractal dimension-based testing
  • Higuchi fractal dimension
  • time series analysis

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Biomedical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Dynamic topological data analysis: a novel fractal dimension-based testing framework with application to brain signals'. Together they form a unique fingerprint.

Cite this