Abstract
Im ersten Teil dieser Arbeit1 wurden die orientierten Flächeninhalte der Punktbahnen ebener äquiformer Zwangläufe studiert und einige Anwendungen der erzielten Resultate angeführt. Der vorliegende zweite Teil beschäftigt sich - unter Beibehaltung der Bezeichnungen, der Numerierung der Abschnitte, Sätze usw. - einerseits mit Geradenhüllbahnen, andererseits mit globalen Eigenschaften spezieller äquiformer Zwangläufe, und zwar mit der äquiformen Bewegung der Krümmungsstrecken einer ebenen Kurve, mit äquiformen Konchoiden-bewegungen und mit der äquiformen Bewegung der Durchmesser eines beschränkten konvexen Bereichs. Beim Studium der durch formale Integration gewonnenen, vorzeichenbehafteten “Längen” der Geradenhüllbahnen wurden zur Interpretation des Vorzeichens orientierte Geraden des Gangsystems betrachtet. Dieser anscheinend notwendige Übergang zu Speeren wurde bislang bei der Formulierung von Holditch-Sätzen über Längen von Geradenhüllbahnen (vgl.[11],[39]) nicht beachtet. Wie schon im ersten Teil gestatten die Ergebnisse eine Anwendung in der globalen euklidischen n-Lagentheorie sowie auf nichtgeschlossene euklidische Zwangläufe.
Original language | English (US) |
---|---|
Pages (from-to) | 122-143 |
Number of pages | 22 |
Journal | Results in Mathematics |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1987 |
Externally published | Yes |
ASJC Scopus subject areas
- Mathematics (miscellaneous)
- Applied Mathematics