EEG Epileptic Data Classification Using the Schrodinger Operator's Spectrum

Maria Sara Nour Sadoun*, Muhammad Mahboob Ur Rahman, Tareq Al-Naffouri, Taous Meriem Laleg-Kirati

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Epilepsy is a common brain disorder characterized by recurrent, unprovoked seizures which affects over 65 million people. Visual inspection of Electroencephalograms (EEG) is common for diagnosis; however, it requires time and expertise. Therefore, an accurate computer-aided epileptic seizure diagnosis system would be valuable. A new research tendency when tackling epileptic seizure detection tends towards minimizing human manual intervention by designing frameworks with autonomous feature engineering. In this optic, this paper proposes a new approach for EEG epileptic data classification. Features derived from the Semi-Classical Signal Analysis (SCSA) method, a quantum-inspired signal processing method well-suited for the characterization of pulse-shaped physiological signals, are proposed. In addition nonlinear dynamical features that proved efficient in characterizing nonlinear dynamics of neural activity have been extracted. Moreover, hyperparameters' optimization, correlation analysis and feature selection have been performed. The selected features are fed into five different machine learning classifiers. The performance of the proposed approach has been analyzed using Bonn university database. The results show that all classifiers yield a performance accuracy of 93% and above.Clinical relevance-The paper contributes to the design of methods and algorithms to build reliable software solutions to assist medical experts and reduce epilepsy disease's diagnosis time and errors.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period07/24/2307/27/23

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'EEG Epileptic Data Classification Using the Schrodinger Operator's Spectrum'. Together they form a unique fingerprint.

Cite this