EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback

Peter Richtárik, Igor Sokolov, Ilyas Fatkhullin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

45 Scopus citations

Abstract

Error feedback (EF), also known as error compensation, is an immensely popular convergence stabilization mechanism in the context of distributed training of supervised machine learning models enhanced by the use of contractive communication compression mechanisms, such as Top-k. First proposed by Seide et al. [2014] as a heuristic, EF resisted any theoretical understanding until recently [Stich et al., 2018, Alistarh et al., 2018]. While these early breakthroughs were followed by a steady stream of works offering various improvements and generalizations, the current theoretical understanding of EF is still very limited. Indeed, to the best of our knowledge, all existing analyses either i) apply to the single node setting only, ii) rely on very strong and often unreasonable assumptions, such as global boundedness of the gradients, or iterate-dependent assumptions that cannot be checked a-priori and may not hold in practice, or iii) circumvent these issues via the introduction of additional unbiased compressors, which increase the communication cost. In this work we fix all these deficiencies by proposing and analyzing a new EF mechanism, which we call EF21, which consistently and substantially outperforms EF in practice. Moreover, our theoretical analysis relies on standard assumptions only, works in the distributed heterogeneous data setting, and leads to better and more meaningful rates. In particular, we prove that EF21 enjoys a fast O(1/T) convergence rate for smooth nonconvex problems, beating the previous bound of O(1/T 2/3), which was shown under a strong bounded gradients assumption. We further improve this to a fast linear rate for Polyak-Lojasiewicz functions, which is the first linear convergence result for an error feedback method not relying on unbiased compressors. Since EF has a large number of applications where it reigns supreme, we believe that our 2021 variant, EF21, can have a large impact on the practice of communication efficient distributed learning.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages4384-4396
Number of pages13
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume6
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback'. Together they form a unique fingerprint.

Cite this