TY - JOUR
T1 - Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water
AU - Xu, Jingli
AU - Singh, Yogesh Balwant
AU - Amy, Gary L.
AU - Ghaffour, NorEddine
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this paper was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The help, assistance and support of the Water Desalination and Reuse Center (WDRC) staff is greatly appreciated. The authors would also like to thank Saudi Aramco for financial support.
PY - 2016/4/9
Y1 - 2016/4/9
N2 - In this study, ten different commercially available PTFE, PP and PVDF membranes were tested in desalination of highly saline water by air gap membrane distillation (AGMD). Process performance was investigated under different operating parameters, such as feed temperatures, feed flow velocities and salt concentrations reaching 120 g/L, and different membrane characteristics, such as membrane material, thickness, pore size and support layer, using a locally designed and fabricatd AGMD module and spacer. Results showed that increasing feed temperature increases permeate flux regardless of the feed concentration. However, feed flow velocity does not significantly affect the flux, especially at low feed temperatures. The PP membrane showed a better performance than the PVDF and PTFE membranes. Permeate flux decreases with the increase of salt concentration of feed solution, especially at higher concentrations above 90 g/L. The existence of membrane support layer led to a slight decrease of permeate flux. Membranes with pore sizes of 0.2 and 0.45 μm gave the best performance. Smaller pore size led to lower flux and larger pore size led to pore wetting due to lower LEP values. The effect of concentration polarization and temperature polarization has also been studied and compared.
AB - In this study, ten different commercially available PTFE, PP and PVDF membranes were tested in desalination of highly saline water by air gap membrane distillation (AGMD). Process performance was investigated under different operating parameters, such as feed temperatures, feed flow velocities and salt concentrations reaching 120 g/L, and different membrane characteristics, such as membrane material, thickness, pore size and support layer, using a locally designed and fabricatd AGMD module and spacer. Results showed that increasing feed temperature increases permeate flux regardless of the feed concentration. However, feed flow velocity does not significantly affect the flux, especially at low feed temperatures. The PP membrane showed a better performance than the PVDF and PTFE membranes. Permeate flux decreases with the increase of salt concentration of feed solution, especially at higher concentrations above 90 g/L. The existence of membrane support layer led to a slight decrease of permeate flux. Membranes with pore sizes of 0.2 and 0.45 μm gave the best performance. Smaller pore size led to lower flux and larger pore size led to pore wetting due to lower LEP values. The effect of concentration polarization and temperature polarization has also been studied and compared.
UR - http://hdl.handle.net/10754/604981
UR - http://linkinghub.elsevier.com/retrieve/pii/S0376738816302216
UR - http://www.scopus.com/inward/record.url?scp=84962833495&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2016.04.010
DO - 10.1016/j.memsci.2016.04.010
M3 - Article
SN - 0376-7388
VL - 512
SP - 73
EP - 82
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -