TY - GEN
T1 - Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry
AU - Hlaing, Ponnya
AU - Echeverri Marquez, Manuel
AU - Singh, Eshan
AU - Almatrafi, Fahad
AU - Cenker, Emre
AU - Ben Houidi, Moez
AU - Johansson, Bengt
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The paper is based upon work supported by Saudi Aramco Research and Development Center FUELCOM3 program under Master Research Agreement Number 6600024505/01. FUELCOM (Fuel Combustion for Advanced Engines) is a collaborative research undertaking between Saudi Aramco and KAUST intended to address the fundamental aspects of hydrocarbon fuel combustion in engines, and develop fuel/engine design tools suitable for advanced combustion modes.
The author would like to thank King Abdullah University of Science and Technology (KAUST) and the Clean Combustion Research Center (CCRC) for lab facilities and research support. Last but not least, the authors would like to convey gratitude towards the IC Engine Lab Safety Supervisor Adrian I. Ichim and the lab technician Riyad H. Jambi for their kind input and assistance in performing the experiments.
PY - 2020/4/14
Y1 - 2020/4/14
N2 - Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio. At each global excess air ratio, the fuel injection to the pre-chamber was varied parametrically to assess the effect of pre-chamber enrichment on engine operating characteristics. Multi-chamber heat release analysis was performed to present the pre-chamber and main chamber heat release characteristics separately. The discharge coefficient of the pre-chamber nozzles was determined by the model calibration to match the pre-chamber and main chamber pressure traces in the GT Power software. The analyzed data reveals a two-stage combustion mechanism in the main chamber where the latter stage is thought to be contributing to the bulk ignition of the main chamber charge. The pre-chamber heat release is correlated to the mixture strength of the pre-chamber, which affects the phasing of the pre-chamber combustion and the initial heat release in the main chamber. As the global excess air ratio becomes lean, the combustion efficiency deteriorates with high HC and CO emissions, while NOx emission declines significantly. The resulting heat release data is presented alongside the engine-out specific emissions.
AB - Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio. At each global excess air ratio, the fuel injection to the pre-chamber was varied parametrically to assess the effect of pre-chamber enrichment on engine operating characteristics. Multi-chamber heat release analysis was performed to present the pre-chamber and main chamber heat release characteristics separately. The discharge coefficient of the pre-chamber nozzles was determined by the model calibration to match the pre-chamber and main chamber pressure traces in the GT Power software. The analyzed data reveals a two-stage combustion mechanism in the main chamber where the latter stage is thought to be contributing to the bulk ignition of the main chamber charge. The pre-chamber heat release is correlated to the mixture strength of the pre-chamber, which affects the phasing of the pre-chamber combustion and the initial heat release in the main chamber. As the global excess air ratio becomes lean, the combustion efficiency deteriorates with high HC and CO emissions, while NOx emission declines significantly. The resulting heat release data is presented alongside the engine-out specific emissions.
UR - http://hdl.handle.net/10754/662246
UR - https://www.sae.org/content/2020-01-0825/
UR - http://www.scopus.com/inward/record.url?scp=85083852787&partnerID=8YFLogxK
U2 - 10.4271/2020-01-0825
DO - 10.4271/2020-01-0825
M3 - Conference contribution
BT - SAE Technical Paper Series
PB - SAE International
ER -