TY - JOUR
T1 - Effect of salinity on oil production: review on low salinity waterflooding mechanisms and exploratory study on pipeline scaling
AU - Zhang, Tao
AU - Li, Yiteng
AU - LI, CHENGUANG
AU - Sun, Shuyu
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): BAS/1/1351-01-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST) through the grant BAS/1/1351-01-01.
PY - 2020/7/21
Y1 - 2020/7/21
N2 - The past decades have witnessed a rapid development of enhanced oil recovery techniques, among which the effect of salinity has become a very attractive topic due to its significant advantages on environmental protection and economical benefits. Numerous studies have been reported focusing on analysis of the mechanisms behind low salinity waterflooding in order to better design the injected salinity under various working conditions and reservoir properties. However, the effect of injection salinity on pipeline scaling has not been widely studied, but this mechanism is important to gathering, transportation and storage for petroleum industry. In this paper, an exhaustive literature review is conducted to summarize several well-recognized and widely accepted mechanisms, including fine migration, wettability alteration, double layer expansion, and multicomponent ion exchange. These mechanisms can be correlated with each other, and certain combined effects may be defined as other mechanisms. In order to mathematically model and numerically describe the fluid behaviors in injection pipelines considering injection salinity, an exploratory phase-field model is presented to simulate the multiphase flow in injection pipeline where scale formation may take place. The effect of injection salinity is represented by the scaling tendency to describe the possibility of scale formation when the scaling species are attached to the scaled structure. It can be easily referred from the simulation result that flow and scaling conditions are significantly affected if a salinity-dependent scaling tendency is considered. Thus, this mechanism should be taken into account in the design of injection process if a sustainable exploitation technique is applied by using purified production water as injection fluid. Finally, remarks and suggestions are provided based on our extensive review and preliminary investigation, to help inspire the future discussions.
AB - The past decades have witnessed a rapid development of enhanced oil recovery techniques, among which the effect of salinity has become a very attractive topic due to its significant advantages on environmental protection and economical benefits. Numerous studies have been reported focusing on analysis of the mechanisms behind low salinity waterflooding in order to better design the injected salinity under various working conditions and reservoir properties. However, the effect of injection salinity on pipeline scaling has not been widely studied, but this mechanism is important to gathering, transportation and storage for petroleum industry. In this paper, an exhaustive literature review is conducted to summarize several well-recognized and widely accepted mechanisms, including fine migration, wettability alteration, double layer expansion, and multicomponent ion exchange. These mechanisms can be correlated with each other, and certain combined effects may be defined as other mechanisms. In order to mathematically model and numerically describe the fluid behaviors in injection pipelines considering injection salinity, an exploratory phase-field model is presented to simulate the multiphase flow in injection pipeline where scale formation may take place. The effect of injection salinity is represented by the scaling tendency to describe the possibility of scale formation when the scaling species are attached to the scaled structure. It can be easily referred from the simulation result that flow and scaling conditions are significantly affected if a salinity-dependent scaling tendency is considered. Thus, this mechanism should be taken into account in the design of injection process if a sustainable exploitation technique is applied by using purified production water as injection fluid. Finally, remarks and suggestions are provided based on our extensive review and preliminary investigation, to help inspire the future discussions.
UR - http://hdl.handle.net/10754/664350
UR - https://ogst.ifpenergiesnouvelles.fr/10.2516/ogst/2020045
U2 - 10.2516/ogst/2020045
DO - 10.2516/ogst/2020045
M3 - Article
SN - 1294-4475
VL - 75
SP - 50
JO - Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles
JF - Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles
ER -