TY - JOUR
T1 - Effect of ultraviolet radiation (UVR) on the life stages of fish
AU - Alves, Ricardo
AU - Agusti, Susana
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2020/5/9
Y1 - 2020/5/9
N2 - Current levels of Ultraviolet Radiation (UVR) represent a significant threat to many fish species. The first studies on the effects of UVR on organisms were performed on fish at the beginning of the twentieth century, and the topic has been progressing continuously until the present. Here, we review the reported harmful effects of ultraviolet B (UVB) and A (UVA) radiations in fish at different lifecycle stages, including embryo, larvae, juveniles and adults. The most evident negative effects during the early development stages are an increase in mortality and incidence in developmental malformations, with the skin and gills the most affected tissues in larvae. Growth reduction, a loss in body condition, and behavioral, physiological and metabolic changes in juveniles/adults occur under short- or long-term UVB exposure. The skin in juveniles/adults undergoes profound morphological and functional changes, even after acute exposure to UVR. Impairment of molecular and cellular processes was evidenced in all development stages by increasing the levels of DNA damage, apoptosis and changing tissues’ antioxidant status. The different photo-protective mechanisms to cope with excessive UVR exposure are also revised. Currently, stratospheric ozone dynamics and climate change interact strongly, enhancing the potential exposure of fish to UVR under water. Due to these environmental changes, fish are exposed to new and complex interactions between UVR and environmental stressors, which potentially affects fish growth and survival. Understanding the ability of fish to cope and adapt to these environmental changes will be essential to evaluate the potential impact in fisheries and mitigate ecological problems.
AB - Current levels of Ultraviolet Radiation (UVR) represent a significant threat to many fish species. The first studies on the effects of UVR on organisms were performed on fish at the beginning of the twentieth century, and the topic has been progressing continuously until the present. Here, we review the reported harmful effects of ultraviolet B (UVB) and A (UVA) radiations in fish at different lifecycle stages, including embryo, larvae, juveniles and adults. The most evident negative effects during the early development stages are an increase in mortality and incidence in developmental malformations, with the skin and gills the most affected tissues in larvae. Growth reduction, a loss in body condition, and behavioral, physiological and metabolic changes in juveniles/adults occur under short- or long-term UVB exposure. The skin in juveniles/adults undergoes profound morphological and functional changes, even after acute exposure to UVR. Impairment of molecular and cellular processes was evidenced in all development stages by increasing the levels of DNA damage, apoptosis and changing tissues’ antioxidant status. The different photo-protective mechanisms to cope with excessive UVR exposure are also revised. Currently, stratospheric ozone dynamics and climate change interact strongly, enhancing the potential exposure of fish to UVR under water. Due to these environmental changes, fish are exposed to new and complex interactions between UVR and environmental stressors, which potentially affects fish growth and survival. Understanding the ability of fish to cope and adapt to these environmental changes will be essential to evaluate the potential impact in fisheries and mitigate ecological problems.
UR - http://hdl.handle.net/10754/662898
UR - http://link.springer.com/10.1007/s11160-020-09603-1
UR - http://www.scopus.com/inward/record.url?scp=85084393587&partnerID=8YFLogxK
U2 - 10.1007/s11160-020-09603-1
DO - 10.1007/s11160-020-09603-1
M3 - Article
SN - 1573-5184
JO - Reviews in Fish Biology and Fisheries
JF - Reviews in Fish Biology and Fisheries
ER -