Abstract
The effect of velocity gradient on the propagation speed of tribrachial flame edge has been investigated experimentally in laminar coflow jets for propane fuel. It was observed that the propagation speed of tribrachial flame showed appreciable deviations at various jet velocities in high mixture fraction gradient regime. From the similarity solutions, it was demonstrated that the velocity gradient varied significantly during the flame propagation. To examine the effect of velocity gradient, detail structures of tribrachial flames were investigated from OH LIF images and Abel transformed images of flame luminosity. It was revealed that the tribrachial point was located on the slanted surface of the premixed wing, and this slanted angle was correlated with the velocity gradient along the stoichiometric contour. The temperature field was visualized qualitatively by the Rayleigh scattering image. The propagation speed of tribrachial flame was corrected by considering the direction of flame propagation with the slanted angle and effective heat conduction to upstream. The corrected propagation speed of tribrachial flame was correlated well. Thus, the mixture fraction gradient together with the velocity gradient affected the propagation speed.
Original language | English (US) |
---|---|
Pages (from-to) | 901-908 |
Number of pages | 8 |
Journal | Proceedings of the Combustion Institute |
Volume | 31 I |
Issue number | 1 |
DOIs | |
State | Published - 2007 |
Externally published | Yes |
Event | 31st International Symposium on Combustion - Heidelberg, Germany Duration: Aug 5 2006 → Aug 11 2006 |
Keywords
- Edge flame
- Mixture fraction gradient
- Tribrachial flame
- Velocity gradient
ASJC Scopus subject areas
- General Chemical Engineering
- Mechanical Engineering
- Physical and Theoretical Chemistry