TY - JOUR
T1 - Effects of a phase engineering strategy on the strain properties in KNN-based ceramics
AU - Lv, Xiang
AU - Wu, Jiagang
N1 - KAUST Repository Item: Exported on 2022-06-07
Acknowledgements: The authors acknowledge financial support from the National Natural Science Foundation of China (NSFC No. 517222008), the Key Technologies Research and Development Program of Sichuan Province (No. 2018JY0007), and the Graduate Student's Research and Innovation Fund of Sichuan University (No. 2018YJSY009). The authors thank Prof. Jürgen Rödel (Technische Universität Darmstadt) for providing the ferroelectric analyzer (aixACCT TF Analyzer 2000), Mrs Hui Wang (Analytical & Testing Center of Sichuan University) for collecting FE-SEM images, and Dr Junwei Zhang and Prof. Xi-xiang Zhang (King Abdullah University of Science and Technology) for collecting TEM images.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2019/1/11
Y1 - 2019/1/11
N2 - In this work, (0.99 − x)(K0.5Na0.5)(Nb0.965Sb0.035)O3–0.01SrZrO3–x(Bi0.5Na0.5)ZrO3 ceramics were selected to show how a phase engineering strategy (PES) affects the strain properties in potassium sodium niobate (KNN)-based ceramics. The application of PES resulted in the coexistence of multiple phases in KNN-based ceramics accompanied by an increased diffuseness of ferroelectricity and decreased domain size. The strain properties, including the dependencies of strain on composition, temperature and fatigue behavior, were evaluated by considering the phase structure, domain configuration and microstructure. The improved room-temperature strain properties of the KNN-based ceramics with PES originated from the converse piezoelectric response, domain switching and possible electric-induced phase transition, which resulted from the coexistence of multiple phases and complex domain configuration. The enhanced temperature stability mainly originated from the converse piezoelectric response. Endurable fatigue resistance (no degradation within 100–105 electric cycles) and a high electrostriction coefficient (Q33 = 0.035 m4 C−2) were observed in the ceramics with x = 0.03 and 0.05, respectively. This study provides a systematic analysis of the effects of PES on strain properties in KNN-based ceramics.
AB - In this work, (0.99 − x)(K0.5Na0.5)(Nb0.965Sb0.035)O3–0.01SrZrO3–x(Bi0.5Na0.5)ZrO3 ceramics were selected to show how a phase engineering strategy (PES) affects the strain properties in potassium sodium niobate (KNN)-based ceramics. The application of PES resulted in the coexistence of multiple phases in KNN-based ceramics accompanied by an increased diffuseness of ferroelectricity and decreased domain size. The strain properties, including the dependencies of strain on composition, temperature and fatigue behavior, were evaluated by considering the phase structure, domain configuration and microstructure. The improved room-temperature strain properties of the KNN-based ceramics with PES originated from the converse piezoelectric response, domain switching and possible electric-induced phase transition, which resulted from the coexistence of multiple phases and complex domain configuration. The enhanced temperature stability mainly originated from the converse piezoelectric response. Endurable fatigue resistance (no degradation within 100–105 electric cycles) and a high electrostriction coefficient (Q33 = 0.035 m4 C−2) were observed in the ceramics with x = 0.03 and 0.05, respectively. This study provides a systematic analysis of the effects of PES on strain properties in KNN-based ceramics.
UR - http://hdl.handle.net/10754/678666
UR - http://xlink.rsc.org/?DOI=C8TC06159A
UR - http://www.scopus.com/inward/record.url?scp=85061661600&partnerID=8YFLogxK
U2 - 10.1039/c8tc06159a
DO - 10.1039/c8tc06159a
M3 - Article
SN - 2050-7534
VL - 7
SP - 2037
EP - 2048
JO - JOURNAL OF MATERIALS CHEMISTRY C
JF - JOURNAL OF MATERIALS CHEMISTRY C
IS - 7
ER -