Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

Mingming Gu, Aman Satija, Robert P. Lucht

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced by placing SF11 glass disks with thicknesses of 10 mm or 20 mm in the optical path for these beams. The magnitude of the chirp in the probe beam was much greater and was induced by placing a 30-cm rod of SF10 glass in the beam path. The temperature measurements were performed in hydrogen/air non-premixed flames stabilized on a Hencken burner at equivalence ratios of 0.3, 0.5, 0.7, and 1.0. We performed measurements with no disks in pump and Stokes beam paths, and then with disks of 10 mm and 20 mm placed in both beam paths. The spectrum of the nonresonant background four-wave mixing signal narrowed considerably with increasing pump and Stokes chirp, while the resonant CARS signal was relatively unaffected. Consequently, the interference of the nonresonant background with the resonant CARS signal in the frequency-spread dephasing region of the spectrum was minimized. The increased rate of decay of the resonant CARS signal with increasing temperature was thus readily apparent. We have started to analyze the CPP fs CARS thermometry data and initial results indicate improved accuracy and precision are obtained due to moderate chirp in the pump and Stokes laser pulses.
Original languageEnglish (US)
Title of host publication2018 AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics (AIAA)
ISBN (Print)9781624105241
DOIs
StatePublished - Jan 7 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry'. Together they form a unique fingerprint.

Cite this