Effects of monomer structures on the evolution of liquid-crystal texture and crystallization during thin-film polymerization

Si Xue Cheng, Tai Shung Chung, Sanjoy Mullick

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We investigated in situ the effects of monomer structures on the formation and evolution of liquid-crystal texture and crystallization during thin-film polymerization of a series of liquid-crystalline and crystalline polymers. The monomers used in this study consisted of 2,6-acetoxynaphtoic acid (ANA), p-acetoxybenzoic acid (ABA), acetoxy acetanilide (AAA), and isophthalic acid (IA). The polycondensation reactions were conducted on the heating stage of a polarizing microscope. The formation of liquid crystallinity was found to be strongly dependent on the straight-monomer structures of ANA and ABA and their percentages as well as the reaction temperature. For the ANA/AAA/IA and ABA/AAA/IA reaction systems, the critical straight-monomer content (ANA or ABA) existed to form the liquid crystalline (LC) state. Interestingly, the critical content to form liquid crystallinity decreased with an increase in the reaction temperature. Above the critical content, the appearance of a defective LC phase and the annihilation of disclinations were observed during the polycondensation reactions. The number of defects decreased with increasing reaction time through annihilation. The annihilation rate increased whereas the defect density decreased with increasing straight-monomer content. For the same molar ratio, the reaction system containing ANA had a faster annihilation rate than that containing ABA. Below the critical content, crystalline polymers were formed. Nucleation and crystal growth were observed during the reactions, and the rate of crystal growth decreased with increasing ANA or ABA content. For the systems having the same molar ratio of ANA or ABA, the ANA/AAA/IA system had a higher tendency to yield the LC phase than the ABA/AAA/IA system because ANA has a longer mesogenic unit.

Original languageEnglish (US)
Pages (from-to)3084-3096
Number of pages13
JournalJournal of Polymer Science, Part B: Polymer Physics
Volume37
Issue number21
DOIs
StatePublished - Nov 1 1999
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effects of monomer structures on the evolution of liquid-crystal texture and crystallization during thin-film polymerization'. Together they form a unique fingerprint.

Cite this