Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

Felix Hinkel, Yoojin M. Kim, Yulian Zagraniarsky, Florian Schlütter, Denis Andrienko, Klaus Müllen, Frédéric Laquai

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps-μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes' excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

Original languageEnglish (US)
Article number044703
JournalJOURNAL OF CHEMICAL PHYSICS
Volume148
Issue number4
DOIs
StatePublished - Jan 28 2018

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells'. Together they form a unique fingerprint.

Cite this