Efficient and accurate nearest neighbor and closest pair search in high-dimensional space

Yufei Tao, Ke Yi, Cheng Sheng, Panos Kalnis

Research output: Contribution to journalArticlepeer-review

86 Citations (SciVal)


Nearest Neighbor (NN) search in high-dimensional space is an important problem in many applications. From the database perspective, a good solution needs to have two properties: (i) it can be easily incorporated in a relational database, and (ii) its query cost should increase sublinearly with the dataset size, regardless of the data and query distributions. Locality-Sensitive Hashing (LSH) is a well-known methodology fulfilling both requirements, but its current implementations either incur expensive space and query cost, or abandon its theoretical guarantee on the quality of query results. Motivated by this, we improve LSH by proposing an access method called the Locality-Sensitive B-tree (LSB-tree) to enable fast, accurate, high-dimensional NN search in relational databases. The combination of several LSB-trees forms a LSB-forest that has strong quality guarantees, but improves dramatically the efficiency of the previous LSH implementation having the same guarantees. In practice, the LSB-tree itself is also an effective index which consumes linear space, supports efficient updates, and provides accurate query results. In our experiments, the LSB-tree was faster than: (i) iDistance (a famous technique for exact NN search) by two orders ofmagnitude, and (ii) MedRank (a recent approximate method with nontrivial quality guarantees) by one order of magnitude, and meanwhile returned much better results. As a second step, we extend our LSB technique to solve another classic problem, called Closest Pair (CP) search, in high-dimensional space. The long-term challenge for this problem has been to achieve subquadratic running time at very high dimensionalities, which fails most of the existing solutions. We show that, using a LSB-forest, CP search can be accomplished in (worst-case) time significantly lower than the quadratic complexity, yet still ensuring very good quality. In practice, accurate answers can be found using just two LSB-trees, thus giving a substantial reduction in the space and running time. In our experiments, our technique was faster: (i) than distance browsing (a well-known method for solving the problem exactly) by several orders of magnitude, and (ii) than D-shift (an approximate approach with theoretical guarantees in low-dimensional space) by one order of magnitude, and at the same time, outputs better results. © 2010 ACM.
Original languageEnglish (US)
Pages (from-to)1-46
Number of pages46
JournalACM Transactions on Database Systems
Issue number3
StatePublished - Jul 1 2010

ASJC Scopus subject areas

  • Information Systems


Dive into the research topics of 'Efficient and accurate nearest neighbor and closest pair search in high-dimensional space'. Together they form a unique fingerprint.

Cite this