TY - JOUR
T1 - Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics
AU - Trinh, Cong
AU - Kirlikovali, Kent O.
AU - Bartynski, Andrew N.
AU - Tassone, Christopher J.
AU - Toney, Michael F.
AU - Burkhard, George F.
AU - McGehee, Michael D.
AU - Djurovich, Peter I.
AU - Thompson, Mark E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Financial support from Global Photonic Energy Corporation (GPEC), Department of Energy (DOE), Center for Energy Nanoscience (CEN) at USC, National Science Foundation (NSF) and King Abdullah University of Science and Technology (KAUST), through the Center for Molecular Photovoltaics (CAMP) is gratefully acknowledged. Details of how each funding agency supported this work are given in the Supporting Information. We thank Dr. Ralf Haiges for the help in refining single crystal structure, Dr. Travis Williams for the help in NOESY 1H NMR experiment, and Drs. Sarah Conron and Zhiwei Liu for helpful discussions.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/8/2
Y1 - 2013/8/2
N2 - Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.
AB - Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.
UR - http://hdl.handle.net/10754/598104
UR - https://pubs.acs.org/doi/10.1021/ja4043356
UR - http://www.scopus.com/inward/record.url?scp=84882265958&partnerID=8YFLogxK
U2 - 10.1021/ja4043356
DO - 10.1021/ja4043356
M3 - Article
C2 - 23859220
SN - 0002-7863
VL - 135
SP - 11920
EP - 11928
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 32
ER -