TY - JOUR
T1 - Efforts towards practical and sustainable Li/Na-air batteries
AU - Chen, Kai
AU - Huang, Gang
AU - Zhang, Xin-Bo
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors thank the National Key R&D Program of China (2017YFA0206700), the National Natural Science Foundation of China (21725103, 51702314), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21010210), the K. C. Wong Education Foundation (GJTD-2018-09), Jilin Province Science and Technology Development Plan Funding Project (20180101203JC), Changchun Science and Technology Development Plan Funding Project (19SS010), National & local united engineering lab for power battery.
PY - 2020/8/23
Y1 - 2020/8/23
N2 - The Li-O2 batteries have attracted much attention due to their parallel theoretical energy density to gasoline. In the past 20 years, our understanding and knowledge in Li-O2 battery have greatly deepened in elucidating the relationship between structure and performance. Our group has been focusing on the cathode engineering and anode protection strategy development in the past years, trying to make full use of the superiority of metal-air batteries towards application. In this review, we aim to retrospect our efforts in developing practical, sustainable metal-air batteries. We will first introduce the basic working principle of Li-O2 batteries and our progresses in Li-O2 batteries with typical cathode designs and anode protection strategies, which have together promoted the large capacity, long life and low charge overpotential. We emphasize the designing art of carbon-based cathodes in this part along with a short talk on all-metal cathodes. The following part is our research in Na-O2 batteries including both cathode and anode optimizations. The differences between Li-O2 and Na-O2 batteries are also briefly discussed. Subsequently, our proof-of-concept work on Li-N2 battery, a new energy storage system and chemistry, is discussed with detailed information on the discharge product identification. Finally, we summarize our designed models and prototypes of flexible metal-air batteries that are promising to be used in flexible devices to deliver more power.
AB - The Li-O2 batteries have attracted much attention due to their parallel theoretical energy density to gasoline. In the past 20 years, our understanding and knowledge in Li-O2 battery have greatly deepened in elucidating the relationship between structure and performance. Our group has been focusing on the cathode engineering and anode protection strategy development in the past years, trying to make full use of the superiority of metal-air batteries towards application. In this review, we aim to retrospect our efforts in developing practical, sustainable metal-air batteries. We will first introduce the basic working principle of Li-O2 batteries and our progresses in Li-O2 batteries with typical cathode designs and anode protection strategies, which have together promoted the large capacity, long life and low charge overpotential. We emphasize the designing art of carbon-based cathodes in this part along with a short talk on all-metal cathodes. The following part is our research in Na-O2 batteries including both cathode and anode optimizations. The differences between Li-O2 and Na-O2 batteries are also briefly discussed. Subsequently, our proof-of-concept work on Li-N2 battery, a new energy storage system and chemistry, is discussed with detailed information on the discharge product identification. Finally, we summarize our designed models and prototypes of flexible metal-air batteries that are promising to be used in flexible devices to deliver more power.
UR - http://hdl.handle.net/10754/664977
UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cjoc.202000408
U2 - 10.1002/cjoc.202000408
DO - 10.1002/cjoc.202000408
M3 - Article
SN - 1001-604X
JO - Chinese Journal of Chemistry
JF - Chinese Journal of Chemistry
ER -