Elastic-Beam Triboelectric Nanogenerator for High-Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard

Yuliang Chen, Yi-Cheng Wang, Ying Zhang, Haiyang Zou, Zhiming Lin, Guobin Zhang, Chongwen Zou, Zhong Lin Wang

Research output: Contribution to journalArticlepeer-review

105 Scopus citations

Abstract

Exploiting novel devices for either collecting energy or self-powered sensors is vital for Internet of Things, sensor networks, and big data. Triboelectric nanogenerators (TENGs) have been proved as an effective solution for both energy harvesting and self-powered sensing. The traditional triboelectric nanogenerators are usually based on four modes: contact-separation mode, lateral sliding mode, single-electrode mode, and freestanding triboelectric-layer mode. Since the reciprocating displacement/force is necessary for all working modes, developing efficient elastic TENG is going to be important and urgent. Here, a kind of elastic-beam TENG with arc-stainless steel foil is developed, whose structure is quite simple, and its working states depend on the contact area and separating distance as proved by experiments and theoretical calculations. This structure is different from traditional structures, e.g., direct sliding or contact-separation structures, whose working states mainly depend on contact area or separating distance. This triboelectric nanogenerator shows advanced mechanical and electrical performance, such as high sensitivity, elasticity, and ultrahigh frequency response, which encourage applications as a force sensor, sensitivity scale, acceleration sensor, vibration sensor, and intelligent keyboard.
Original languageEnglish (US)
Pages (from-to)1802159
JournalAdvanced Energy Materials
Volume8
Issue number29
DOIs
StatePublished - Sep 3 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Elastic-Beam Triboelectric Nanogenerator for High-Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard'. Together they form a unique fingerprint.

Cite this