TY - JOUR
T1 - Electrical and mechanical performance of graphene sheets exposed to oxidative environments
AU - Lanza, Mario
AU - Wang, Yan
AU - Gao, Teng
AU - Bayerl, Albin
AU - Porti, Marc
AU - Nafria, Montserrat
AU - Zhou, Yangbo
AU - Jing, Guangyin
AU - Zhang, Yanfeng
AU - Liu, Zhongfan
AU - Yu, Dapeng
AU - Duan, Huiling
N1 - Generated from Scopus record by KAUST IRTS on 2021-03-16
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Graphene coatings have been shown to protect the underlying material from oxidation when exposed to different media. However, the passivating properties of graphene in air at room temperature, which corresponds to the operating conditions of many electronic devices, still remain unclear. In this work, we analyze the oxidation kinetics of graphene/Cu samples in air at room temperature for long periods of time (from 1 day to 113 days) using scanning electron microscopy, conductive atomic force microscopy and Auger electron microscopy, and we compare the results with those obtained for similar samples treated in H2O2. We observe that unlike the graphene sheets exposed to H2O2, in which the accumulation of oxygen at the graphene domain boundaries evolves in a very controlled and progressive way, the local oxidation of graphene in air happens in a disordered manner. In both cases the oxide hillocks formed at the graphene domain boundaries can propagate to the domains until reaching a limiting width and height. Our results demonstrate that the local oxidation of the underlying material along the domain boundaries can dramatically decrease the roughness, conductivity, mechanical resistance and frictional characteristics of the graphene sheet, which reduces the performance of the whole device. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
AB - Graphene coatings have been shown to protect the underlying material from oxidation when exposed to different media. However, the passivating properties of graphene in air at room temperature, which corresponds to the operating conditions of many electronic devices, still remain unclear. In this work, we analyze the oxidation kinetics of graphene/Cu samples in air at room temperature for long periods of time (from 1 day to 113 days) using scanning electron microscopy, conductive atomic force microscopy and Auger electron microscopy, and we compare the results with those obtained for similar samples treated in H2O2. We observe that unlike the graphene sheets exposed to H2O2, in which the accumulation of oxygen at the graphene domain boundaries evolves in a very controlled and progressive way, the local oxidation of graphene in air happens in a disordered manner. In both cases the oxide hillocks formed at the graphene domain boundaries can propagate to the domains until reaching a limiting width and height. Our results demonstrate that the local oxidation of the underlying material along the domain boundaries can dramatically decrease the roughness, conductivity, mechanical resistance and frictional characteristics of the graphene sheet, which reduces the performance of the whole device. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
UR - http://link.springer.com/10.1007/s12274-013-0326-6
UR - http://www.scopus.com/inward/record.url?scp=84880152794&partnerID=8YFLogxK
U2 - 10.1007/s12274-013-0326-6
DO - 10.1007/s12274-013-0326-6
M3 - Article
SN - 1998-0000
VL - 6
SP - 485
EP - 495
JO - Nano Research
JF - Nano Research
IS - 7
ER -