Electrochemical Characterization of TiO 2 Blocking Layers for Dye-Sensitized Solar Cells

Ladislav Kavan, Nicolas Tétreault, Thomas Moehl, Michael Grätzel

Research output: Contribution to journalArticlepeer-review

210 Scopus citations

Abstract

Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from the substrate (FTO or Ti) with the hole-conducting medium at this interface. The quality of blocking is evaluated electrochemically by methylviologen, ferro/ferricyanide, and spiro-OMeTAD as the model redox probes. Two types of pinholes in the blocking layers are classified, and their effective area is quantified. Frequency-independent Mott-Schottky plots are fitted from electrochemical impedance spectroscopy. Certain films of the thicknesses of several nanometers allow distinguishing the depletion layer formation both in the TiO2 film and in the FTO substrate underneath the titania film. The excellent blocking function of thermally oxidized Ti, electrodeposited film (60 nm), and atomic-layer-deposited films (>6 nm) is documented by the relative pinhole area of less than 1%. However, the blocking behavior of electrodeposited and atomic-layer-deposited films is strongly reduced upon calcination at 500 °C. The blocking function of spray-pyrolyzed films is less good but also less sensitive to calcination. The thermally oxidized Ti is well blocking and insensitive to calcination. © 2014 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)16408-16418
Number of pages11
JournalThe Journal of Physical Chemistry C
Volume118
Issue number30
DOIs
StatePublished - Jan 14 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Electrochemical Characterization of TiO 2 Blocking Layers for Dye-Sensitized Solar Cells'. Together they form a unique fingerprint.

Cite this