TY - JOUR
T1 - Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications
AU - Coluccio, Maria Laura
AU - Gentile, Francesco
AU - Francardi, Marco
AU - Perozziello, Gerardo
AU - Malara, Natalia
AU - Candeloro, Patrizio
AU - Di Fabrizio, Enzo M.
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2014/3/27
Y1 - 2014/3/27
N2 - The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.
AB - The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.
UR - http://hdl.handle.net/10754/325364
UR - http://www.mdpi.com/1424-8220/14/4/6056
UR - http://www.scopus.com/inward/record.url?scp=84897399277&partnerID=8YFLogxK
U2 - 10.3390/s140406056
DO - 10.3390/s140406056
M3 - Article
C2 - 24681672
SN - 1424-8220
VL - 14
SP - 6056
EP - 6083
JO - Sensors
JF - Sensors
IS - 4
ER -