TY - JOUR
T1 - Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport
AU - Choudhury, Snehashis
AU - Tu, Zhengyuan
AU - Stalin, Sanjuna
AU - Vu, Duylinh
AU - Fawole, Kristen
AU - Gunceler, Deniz
AU - Sundararaman, Ravishankar
AU - Archer, Lynden A.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: We are grateful to the Advanced Research Projects Agency-Energy (ARPA-E) through award number 1002-2265, DE-FOA-001002 for supporting this study. The study also made use of the electrochemical characterization facilities of the KAUST-CU Center for Energy and Sustainability, which is supported by the King Abdullah University of Science and Technology (KAUST) through award number KUS-C1-018-02. Electron microscopy facilities at the Cornell Center for Materials Research (CCMR), an NSF-supported MRSEC through Grant DMR-1120296, were also used for the study.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2017/9/8
Y1 - 2017/9/8
N2 - Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.
AB - Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.
UR - http://hdl.handle.net/10754/626697
UR - http://doi.wiley.com/10.1002/anie.201707754
UR - http://www.scopus.com/inward/record.url?scp=85028997208&partnerID=8YFLogxK
U2 - 10.1002/anie.201707754
DO - 10.1002/anie.201707754
M3 - Article
SN - 1433-7851
VL - 56
SP - 13070
EP - 13077
JO - Angewandte Chemie International Edition
JF - Angewandte Chemie International Edition
IS - 42
ER -