TY - JOUR
T1 - Electron mobility enhancement in solution-processed low-voltage In2O3 transistors via channel interface planarization
AU - Mottram, Alexander D.
AU - Pattanasattayavong, Pichaya
AU - Isakov, Ivan
AU - Wyatt-Moon, Gwen
AU - Faber, Hendrik
AU - Lin, Yen Hung
AU - Anthopoulos, Thomas D.
N1 - Publisher Copyright:
© 2018 Author(s).
PY - 2018/6/1
Y1 - 2018/6/1
N2 - The quality of the gate dielectric/semiconductor interface in thin-film transistors (TFTs) is known to determine the optimum operating characteristics attainable. As a result in recent years the development of methodologies that aim to improve the channel interface quality has become a priority. Herein, we study the impact of the surface morphology of three solution-processed high-k metal oxide dielectrics, namely AlOx, HfOx, and ZrOx, on the operating characteristics of In2O3 TFTs. Six different dielectric configurations were produced via single or double-step spin-casting of the various precursor formulations. All layers exhibited high areal capacitance in the range of 200 to 575 nF/cm2, hence proving suitable, for application in low-voltage n-channel In2O3 TFTs. Study of the surface topography of the various layers indicates that double spin-cast dielectrics exhibit consistently smoother layer surfaces and yield TFTs with improved operating characteristics manifested, primarily, as an increase in the electron mobility (μ). To this end, μ is found to increase from 1 to 2 cm2/Vs for AlOx, 1.8 to 6.4 cm2/Vs for HfOx, and 2.8 to 18.7 cm2/Vs for ZrOx-based In2O3 TFTs utilizing single and double-layer dielectric, respectively. The proposed method is simple and potentially applicable to other metal oxide dielectrics and semiconductors.
AB - The quality of the gate dielectric/semiconductor interface in thin-film transistors (TFTs) is known to determine the optimum operating characteristics attainable. As a result in recent years the development of methodologies that aim to improve the channel interface quality has become a priority. Herein, we study the impact of the surface morphology of three solution-processed high-k metal oxide dielectrics, namely AlOx, HfOx, and ZrOx, on the operating characteristics of In2O3 TFTs. Six different dielectric configurations were produced via single or double-step spin-casting of the various precursor formulations. All layers exhibited high areal capacitance in the range of 200 to 575 nF/cm2, hence proving suitable, for application in low-voltage n-channel In2O3 TFTs. Study of the surface topography of the various layers indicates that double spin-cast dielectrics exhibit consistently smoother layer surfaces and yield TFTs with improved operating characteristics manifested, primarily, as an increase in the electron mobility (μ). To this end, μ is found to increase from 1 to 2 cm2/Vs for AlOx, 1.8 to 6.4 cm2/Vs for HfOx, and 2.8 to 18.7 cm2/Vs for ZrOx-based In2O3 TFTs utilizing single and double-layer dielectric, respectively. The proposed method is simple and potentially applicable to other metal oxide dielectrics and semiconductors.
UR - http://www.scopus.com/inward/record.url?scp=85048602017&partnerID=8YFLogxK
U2 - 10.1063/1.5036809
DO - 10.1063/1.5036809
M3 - Article
AN - SCOPUS:85048602017
SN - 2158-3226
VL - 8
JO - AIP ADVANCES
JF - AIP ADVANCES
IS - 6
M1 - 065015
ER -