Abstract
Intersystem crossing (ISC) of triplet photosensitizers is a vital process for fundamental photochemistry and photodynamic therapy (PDT). Herein, we report the co-existence of efficient ISC and long triplet excited lifetime in a heavy atom-free bodipy helicene molecule. Via theoretical computation and time-resolved EPR spectroscopy, we confirmed that the ISC of the bodipy results from its twisted molecular structure and reduced symmetry. The twisted bodipy shows intense long wavelength absorption (ϵ=1.76×105 m−1 cm−1 at 630 nm), satisfactory triplet quantum yield (ΦT=52 %), and long-lived triplet state (τT=492 μs), leading to unprecedented performance as a triplet photosensitizer for PDT. Moreover, nanoparticles constructed with such helical bodipy show efficient PDT-mediated antitumor immunity amplification with an ultra-low dose (0.25 μg kg−1), which is several hundred times lower than that of the existing PDT reagents.
Original language | English (US) |
---|---|
Pages (from-to) | 16248-16255 |
Number of pages | 8 |
Journal | Angewandte Chemie |
Volume | 132 |
Issue number | 37 |
DOIs | |
State | Published - May 25 2020 |