Abstract
Developing efficient and durable electrocatalysts is key to optimizing the electrocatalytic hydrogen evolution reaction (HER), currently one of the cleanest and most sustainable routes for producing hydrogen. Here, a unique and efficient approach to fabricate and embed uniformly dispersed Ir nanoparticles in a 3D cage-like organic network (CON) structure is reported. These uniformly trapped Ir nanoparticles within the 3D CON (Ir@CON) effectively catalyze the HER process. The Ir@CON electrocatalyst exhibits high turnover frequencies of 0.66 and 0.20 H2 s−1 at 25 mV and small overpotentials of 13.6 and 13.5 mV while generating a current density of 10 mA cm−2 in 0.5 m H2SO4 and 1.0 m KOH aqueous solutions, respectively, as compared to commercial Pt/C (18 and 23 mV) and Ir/C (20.7 and 28.3 mV). More importantly, the catalyst shows superior stability in both acidic and alkaline media. These results highlight a potentially powerful approach for the design and synthesis of efficient and durable electrocatalysts for HER.
Original language | English (US) |
---|---|
Journal | ADVANCED MATERIALS |
Volume | 30 |
Issue number | 52 |
DOIs | |
State | Published - Dec 27 2018 |
Externally published | Yes |