Abstract
Agriculture is expanding into regions that are affected by salinity. This review considers energy costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximise water versus ion uptake are addressed. Energy requirements for transport of NaCl to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of H+ -ATPase is also a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of salt tolerance to guide breeding and engineering of molecular components. This article is protected by copyright. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 1072-1090 |
Number of pages | 19 |
Journal | New Phytologist |
Volume | 225 |
Issue number | 3 |
DOIs | |
State | Published - Apr 20 2019 |