TY - GEN
T1 - Energy Efficient Capacitive Body Channel Access Schemes for Internet of Bodies
AU - Alamoudi, Abeer
AU - Celik, Abdulkadir
AU - Eltawil, Ahmed M.
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - The Internet of bodies is a network of wearable, ingestible, injectable, and implantable smart objects located in, on, and around the body. Although radio frequency (RF) systems are considered the default choice for implementing on-body communications, which need to be localized in the vicinity of the human body (typically < 5 cm), highly radiative RF propagations unnecessarily extend several meters beyond the human body. This intuitively degrades energy efficiency, leads to interference and co-existence issues, and exposes sensitive personal data to security threats. As an alternative, the capacitive body channel communication (BCC) couples the signal (between 10 kHz-100 MHz) to the human body, which is more conductive than air. Hence, BCC provides a lower propagation loss, better physical layer security, and nJ/bit to pJ/bit energy efficiency. Accordingly, this paper investigates orthogonal and non-orthogonal capacitive body channel access schemes for ultra-low-power IoB nodes. We present the optimal uplink and downlink power allocations in closed-form, which deliver better fairness and network lifetime than benchmark numerical solvers. For a given bandwidth and data rate requirement, we also derive the maximum affordable number of IoB nodes for both directions of orthogonal and non-orthogonal schemes.
AB - The Internet of bodies is a network of wearable, ingestible, injectable, and implantable smart objects located in, on, and around the body. Although radio frequency (RF) systems are considered the default choice for implementing on-body communications, which need to be localized in the vicinity of the human body (typically < 5 cm), highly radiative RF propagations unnecessarily extend several meters beyond the human body. This intuitively degrades energy efficiency, leads to interference and co-existence issues, and exposes sensitive personal data to security threats. As an alternative, the capacitive body channel communication (BCC) couples the signal (between 10 kHz-100 MHz) to the human body, which is more conductive than air. Hence, BCC provides a lower propagation loss, better physical layer security, and nJ/bit to pJ/bit energy efficiency. Accordingly, this paper investigates orthogonal and non-orthogonal capacitive body channel access schemes for ultra-low-power IoB nodes. We present the optimal uplink and downlink power allocations in closed-form, which deliver better fairness and network lifetime than benchmark numerical solvers. For a given bandwidth and data rate requirement, we also derive the maximum affordable number of IoB nodes for both directions of orthogonal and non-orthogonal schemes.
KW - capacitive coupling
KW - human body communications
KW - internet of things
KW - multiple access
KW - power control
KW - ultra-low power
KW - Wireless body area networks
UR - http://www.scopus.com/inward/record.url?scp=85127237342&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM46510.2021.9685810
DO - 10.1109/GLOBECOM46510.2021.9685810
M3 - Conference contribution
AN - SCOPUS:85127237342
T3 - 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
BT - 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE Global Communications Conference, GLOBECOM 2021
Y2 - 7 December 2021 through 11 December 2021
ER -