TY - GEN
T1 - Enhanced Anomaly Detection Via PLS Regression Models and Information Entropy Theory
AU - Harrou, Fouzi
AU - Sun, Ying
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/1/11
Y1 - 2016/1/11
N2 - Accurate and effective fault detection and diagnosis of modern engineering systems is crucial for ensuring reliability, safety and maintaining the desired product quality. In this work, we propose an innovative method for detecting small faults in the highly correlated multivariate data. The developed method utilizes partial least square (PLS) method as a modelling framework, and the symmetrized Kullback-Leibler divergence (KLD) as a monitoring index, where it is used to quantify the dissimilarity between probability distributions of current PLS-based residual and reference one obtained using fault-free data. The performance of the PLS-based KLD fault detection algorithm is illustrated and compared to the conventional PLS-based fault detection methods. Using synthetic data, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional methods, especially when data are highly correlated and small faults are of interest.
AB - Accurate and effective fault detection and diagnosis of modern engineering systems is crucial for ensuring reliability, safety and maintaining the desired product quality. In this work, we propose an innovative method for detecting small faults in the highly correlated multivariate data. The developed method utilizes partial least square (PLS) method as a modelling framework, and the symmetrized Kullback-Leibler divergence (KLD) as a monitoring index, where it is used to quantify the dissimilarity between probability distributions of current PLS-based residual and reference one obtained using fault-free data. The performance of the PLS-based KLD fault detection algorithm is illustrated and compared to the conventional PLS-based fault detection methods. Using synthetic data, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional methods, especially when data are highly correlated and small faults are of interest.
UR - http://hdl.handle.net/10754/595955
UR - http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7376637
UR - http://www.scopus.com/inward/record.url?scp=84964944664&partnerID=8YFLogxK
U2 - 10.1109/SSCI.2015.64
DO - 10.1109/SSCI.2015.64
M3 - Conference contribution
SN - 9781479975600
SP - 383
EP - 388
BT - 2015 IEEE Symposium Series on Computational Intelligence
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -