TY - JOUR
T1 - Enhanced Huffman Coded OFDM with Index Modulation
AU - Dang, Shuping
AU - Guo, Shuaishuai
AU - Coon, Justin P.
AU - Shihada, Basem
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We thank the editor and the anonymous reviewers for the constructive comments, which have helped us improve the quality of the paper.
PY - 2020
Y1 - 2020
N2 - In this paper, we propose an enhanced Huffman coded orthogonal frequency-division multiplexing with index modulation (EHC-OFDM-IM) scheme. The proposed scheme is capable of utilizing all legitimate subcarrier activation patterns (SAPs) and adapting the bijective mapping relation between SAPs and leaves on a given Huffman tree according to channel state information (CSI). As a result, a dynamic codebook update mechanism is obtained, which can provide more reliable transmissions. We take the average block error rate (BLER) as the performance evaluation metric and approximate it in closed form when the transmit power allocated to each subcarrier is independent of channel states. Also, we propose two CSI-based power allocation schemes with different requirements for computational complexity to further improve the error performance. Subsequently, we carry out numerical simulations to corroborate the error performance analysis and the proposed dynamic power allocation schemes. By studying the numerical results, we find that the depth of the Huffman tree has a significant impact on the error performance when the SAP-to-leaf mapping relation is optimized based on CSI. Meanwhile, through numerical results, we also discuss the trade-off between error performance and data transmission rate and investigate the impacts of imperfect CSI on the error performance of EHC-OFDM-IM.
AB - In this paper, we propose an enhanced Huffman coded orthogonal frequency-division multiplexing with index modulation (EHC-OFDM-IM) scheme. The proposed scheme is capable of utilizing all legitimate subcarrier activation patterns (SAPs) and adapting the bijective mapping relation between SAPs and leaves on a given Huffman tree according to channel state information (CSI). As a result, a dynamic codebook update mechanism is obtained, which can provide more reliable transmissions. We take the average block error rate (BLER) as the performance evaluation metric and approximate it in closed form when the transmit power allocated to each subcarrier is independent of channel states. Also, we propose two CSI-based power allocation schemes with different requirements for computational complexity to further improve the error performance. Subsequently, we carry out numerical simulations to corroborate the error performance analysis and the proposed dynamic power allocation schemes. By studying the numerical results, we find that the depth of the Huffman tree has a significant impact on the error performance when the SAP-to-leaf mapping relation is optimized based on CSI. Meanwhile, through numerical results, we also discuss the trade-off between error performance and data transmission rate and investigate the impacts of imperfect CSI on the error performance of EHC-OFDM-IM.
UR - http://hdl.handle.net/10754/660936
UR - https://ieeexplore.ieee.org/document/8962119/
UR - http://www.scopus.com/inward/record.url?scp=85083458017&partnerID=8YFLogxK
U2 - 10.1109/TWC.2020.2965524
DO - 10.1109/TWC.2020.2965524
M3 - Article
SN - 1536-1276
VL - 19
SP - 1
EP - 1
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 4
ER -