TY - JOUR
T1 - Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks
AU - Xin, Qingping
AU - Ouyang, Jingyi
AU - Liu, Tianyu
AU - Li, Zhao
AU - Li, Zhen
AU - Liu, Yuchen
AU - Wang, Shaofei
AU - Wu, Hong
AU - Jiang, Zhongyi
AU - Cao, Xingzhong
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-20
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Polyethylenimine (PEI) was immobilized by MIL-101(Cr) (∼550 nm) via a facile vacuum-assisted method, and the obtained PEI@MIL-101(Cr) was then incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate mixed matrix membranes (MMMs). High loading and uniform dispersion of PEI in MIL-101(Cr) were achieved as demonstrated by ICP, FT-IR, XPS, and EDS-mapping. The PEI both in the pore channels and on the surface of MIL-101(Cr) improved the filler-polymer interface compatibility due to the electrostatic interaction and hydrogen bond between sulfonic acid group and PEI, and simultaneously rendered abundant amine carriers to facilitate the transport of CO2 through reversible reaction. MMMs were evaluated in terms of gas separation performance, thermal stability, and mechanical property. The as-prepared SPEEK/PEI@MIL-101(Cr) MMMs showed increased gas permeability and selectivity, and the highest ideal selectivities for CO2/CH4 and CO2/N2 were 71.8 and 80.0 (at a CO2 permeability of 2490 Barrer), respectively. Compared with the membranes doped with unfilled MIL-101(Cr), the ideal selectivities of CO2/CH4 and CO2/N2 for PEI@MIL-101(Cr)-doped membranes were increased by 128.1 and 102.4 %, respectively, at 40 wt % filler loading, surpassing the 2008 Robeson upper bound line. Moreover, the mechanical property and thermal stability of SPEEK/PEI@MIL-101(Cr) were enhanced. (Chemical Equation Presented).
AB - Polyethylenimine (PEI) was immobilized by MIL-101(Cr) (∼550 nm) via a facile vacuum-assisted method, and the obtained PEI@MIL-101(Cr) was then incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate mixed matrix membranes (MMMs). High loading and uniform dispersion of PEI in MIL-101(Cr) were achieved as demonstrated by ICP, FT-IR, XPS, and EDS-mapping. The PEI both in the pore channels and on the surface of MIL-101(Cr) improved the filler-polymer interface compatibility due to the electrostatic interaction and hydrogen bond between sulfonic acid group and PEI, and simultaneously rendered abundant amine carriers to facilitate the transport of CO2 through reversible reaction. MMMs were evaluated in terms of gas separation performance, thermal stability, and mechanical property. The as-prepared SPEEK/PEI@MIL-101(Cr) MMMs showed increased gas permeability and selectivity, and the highest ideal selectivities for CO2/CH4 and CO2/N2 were 71.8 and 80.0 (at a CO2 permeability of 2490 Barrer), respectively. Compared with the membranes doped with unfilled MIL-101(Cr), the ideal selectivities of CO2/CH4 and CO2/N2 for PEI@MIL-101(Cr)-doped membranes were increased by 128.1 and 102.4 %, respectively, at 40 wt % filler loading, surpassing the 2008 Robeson upper bound line. Moreover, the mechanical property and thermal stability of SPEEK/PEI@MIL-101(Cr) were enhanced. (Chemical Equation Presented).
UR - https://pubs.acs.org/doi/10.1021/am504742q
UR - http://www.scopus.com/inward/record.url?scp=84921447606&partnerID=8YFLogxK
U2 - 10.1021/am504742q
DO - 10.1021/am504742q
M3 - Article
SN - 1944-8252
VL - 7
SP - 1065
EP - 1077
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 2
ER -