Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks

Ismail Alqerm, Basem Shihada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32 Scopus citations

Abstract

Heterogeneous cloud radio access networks (H-CRAN) is a new trend of 5G that aims to leverage the heterogeneous and cloud radio access networks advantages. Low power remote radio heads (RRHs) are exploited to provide high data rates for users with high quality of service requirements (QoS), while high power macro base stations (BSs) are deployed for coverage maintenance and low QoS users support. However, the inter-tier interference between the macro BS and RRHs and energy efficiency are critical challenges that accompany resource allocation in H-CRAN. Therefore, we propose a centralized resource allocation scheme using online learning, which guarantees interference mitigation and maximizes energy efficiency while maintaining QoS requirements for all users. To foster the performance of such scheme with a model-free learning, we consider users' priority in resource blocks (RBs) allocation and compact state representation based learning methodology to enhance the learning process. Simulation results confirm that the proposed resource allocation solution can mitigate interference, increase energy and spectral efficiencies significantly, and maintain users' QoS requirements.
Original languageEnglish (US)
Title of host publication2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages1-7
Number of pages7
ISBN (Print)9781538635292
DOIs
StatePublished - Feb 15 2018

Fingerprint

Dive into the research topics of 'Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks'. Together they form a unique fingerprint.

Cite this