Enhancing the conductivity of transparent graphene films via doping

Ki Kang Kim, Alfonso Reina, Yumeng Shi, Hyesung Park, Lain Jong Li, Young Hee Lee, Jing Kong

Research output: Contribution to journalArticlepeer-review

367 Scopus citations

Abstract

We report chemical doping (p-type) to reduce the sheet resistance of graphene films for the application of high-performance transparent conducting films. The graphene film synthesized by chemical vapor deposition was transferred to silicon oxide and quartz substrates using poly(methyl methacrylate). AuCl3 in nitromethane was used to dope the graphene films and the sheet resistance was reduced by up to 77% depending on the doping concentration. The p-type doping behavior was confirmed by characterizing the Raman G-band of the doped graphene film. Atomic force microscope and scanning electron microscope images reveal the deposition of Au particles on the film. The sizes of the Au particles are 10-100nm. The effect of doping was also investigated by transferring the graphene films onto quartz and poly(ethylene terephthalate) substrates. The sheet resistance reached 150 Ω/sq at 87% transmittance, which is comparable to those of indium tin oxide conducting film. The doping effect was manifested only with 1-2 layer graphene but not with multi-layer graphene. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

Original languageEnglish (US)
Article number285205
JournalNanotechnology
Volume21
Issue number28
DOIs
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Enhancing the conductivity of transparent graphene films via doping'. Together they form a unique fingerprint.

Cite this