TY - JOUR
T1 - Environmental Friendliness and High Performance of Multifunctional Tween 80/ZnO-Nanoparticles-Added Water-Based Drilling Fluid: An Experimental Approach
AU - Aftab, Adnan
AU - Ali, Muhammad
AU - Sahito, Muhammad Faraz
AU - Mohanty, Udit Surya
AU - Jha, Nilesh Kumar
AU - Akhondzadeh, Hamed
AU - Azhar, Muhammad Rizwan
AU - Ismail, Abdul Razak
AU - Keshavarz, Alireza
AU - Iglauer, Stefan
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2020/8/3
Y1 - 2020/8/3
N2 - The energy industry is exploring sustainable chemistry and engineering solutions for exploitation of shale reservoirs. Smectite-rich shale is challenging to drill with traditional water-based drilling fluid (WBDF). The objectives of this study are (i) to investigate acute toxicity of drilling fluids and (ii) to enhance the rheological properties, lubricity, and clay inhibition behavior of WBDF by adding Tween 80 (T80)/ZnO nanoparticles. Acute toxicity results revealed 100% survival rate of white leg shrimp in WBDF waste. At 0.7 g, the optimum concentration of T80ZnO, the plastic viscosity (PV) was improved by 12%; the negative surface charge of nanomaterial might have improved repulsion forces/stability and enhanced viscosity in the drilling fluids. Yield point (YP) was improved by 71%, moreover 10 min gel strength (GS) and 10 s GS were significantly increased by 32 and 54%, respectively. The metal oxide nanosolids induced heat transfer characteristics and ensured gelling and yield strength properties. Lubricity was slightly increased by 7%; the ZnO nanorods between the two sliding contact surfaces (i.e., assuming drill pipe and casing) improved lubricity. Filtrate loss (FL) volume was considerably minimized to 17 and 30% at API and high-pressure, high-temperature (HPHT) conditions, respectively; this observation could be explained by pores plugging in the filter paper. Heated clay swelling inhibition was optimized after addition of 0.6 g of T80ZnO nanoparticles to WBDF. The clay inhibition was enhanced by 9 and 17% when compared to conventional WBDF and fresh water, respectively; this progress might have attributed to the corresponding: (i) pores plugging in the clay and (ii) interparticle pores bridging between existing drilling additives and nanomaterial. The above findings identify that this drilling fluid could attain sustainable environmental and operational success while drilling into montmorillonite/smectite rich-clay and shale rock.
AB - The energy industry is exploring sustainable chemistry and engineering solutions for exploitation of shale reservoirs. Smectite-rich shale is challenging to drill with traditional water-based drilling fluid (WBDF). The objectives of this study are (i) to investigate acute toxicity of drilling fluids and (ii) to enhance the rheological properties, lubricity, and clay inhibition behavior of WBDF by adding Tween 80 (T80)/ZnO nanoparticles. Acute toxicity results revealed 100% survival rate of white leg shrimp in WBDF waste. At 0.7 g, the optimum concentration of T80ZnO, the plastic viscosity (PV) was improved by 12%; the negative surface charge of nanomaterial might have improved repulsion forces/stability and enhanced viscosity in the drilling fluids. Yield point (YP) was improved by 71%, moreover 10 min gel strength (GS) and 10 s GS were significantly increased by 32 and 54%, respectively. The metal oxide nanosolids induced heat transfer characteristics and ensured gelling and yield strength properties. Lubricity was slightly increased by 7%; the ZnO nanorods between the two sliding contact surfaces (i.e., assuming drill pipe and casing) improved lubricity. Filtrate loss (FL) volume was considerably minimized to 17 and 30% at API and high-pressure, high-temperature (HPHT) conditions, respectively; this observation could be explained by pores plugging in the filter paper. Heated clay swelling inhibition was optimized after addition of 0.6 g of T80ZnO nanoparticles to WBDF. The clay inhibition was enhanced by 9 and 17% when compared to conventional WBDF and fresh water, respectively; this progress might have attributed to the corresponding: (i) pores plugging in the clay and (ii) interparticle pores bridging between existing drilling additives and nanomaterial. The above findings identify that this drilling fluid could attain sustainable environmental and operational success while drilling into montmorillonite/smectite rich-clay and shale rock.
UR - https://pubs.acs.org/doi/10.1021/acssuschemeng.0c02661
UR - http://www.scopus.com/inward/record.url?scp=85089250388&partnerID=8YFLogxK
U2 - 10.1021/acssuschemeng.0c02661
DO - 10.1021/acssuschemeng.0c02661
M3 - Article
SN - 2168-0485
VL - 8
SP - 11224
EP - 11243
JO - ACS Sustainable Chemistry and Engineering
JF - ACS Sustainable Chemistry and Engineering
IS - 30
ER -