Error Compensated Distributed SGD can be Accelerated

Xun Qian*, Peter Richtárik, Tong Zhang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Gradient compression is a recent and increasingly popular technique for reducing the communication cost in distributed training of large-scale machine learning models. In this work we focus on developing efficient distributed methods that can work for any compressor satisfying a certain contraction property, which includes both unbiased (after appropriate scaling) and biased compressors such as RandK and TopK. Applied naively, gradient compression introduces errors that either slow down convergence or lead to divergence. A popular technique designed to tackle this issue is error compensation/error feedback. Due to the difficulties associated with analyzing biased compressors, it is not known whether gradient compression with error compensation can be combined with acceleration. In this work, we show for the first time that error compensated gradient compression methods can be accelerated. In particular, we propose and study the error compensated loopless Katyusha method, and establish an accelerated linear convergence rate under standard assumptions. We show through numerical experiments that the proposed method converges with substantially fewer communication rounds than previous error compensated algorithms.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages30401-30413
Number of pages13
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Error Compensated Distributed SGD can be Accelerated'. Together they form a unique fingerprint.

Cite this