TY - GEN
T1 - Error Compensated Distributed SGD can be Accelerated
AU - Qian, Xun
AU - Richtárik, Peter
AU - Zhang, Tong
N1 - Funding Information:
Xun Qian and Peter Richtárik acknowledge funding by the KAUST Baseline Research Funding Scheme, the Extreme Computing Research Center at KAUST, and administrative support from the Visual Computing Center at KAUST. Tong Zhang acknowledges further funding by GRF 16201320.
Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Gradient compression is a recent and increasingly popular technique for reducing the communication cost in distributed training of large-scale machine learning models. In this work we focus on developing efficient distributed methods that can work for any compressor satisfying a certain contraction property, which includes both unbiased (after appropriate scaling) and biased compressors such as RandK and TopK. Applied naively, gradient compression introduces errors that either slow down convergence or lead to divergence. A popular technique designed to tackle this issue is error compensation/error feedback. Due to the difficulties associated with analyzing biased compressors, it is not known whether gradient compression with error compensation can be combined with acceleration. In this work, we show for the first time that error compensated gradient compression methods can be accelerated. In particular, we propose and study the error compensated loopless Katyusha method, and establish an accelerated linear convergence rate under standard assumptions. We show through numerical experiments that the proposed method converges with substantially fewer communication rounds than previous error compensated algorithms.
AB - Gradient compression is a recent and increasingly popular technique for reducing the communication cost in distributed training of large-scale machine learning models. In this work we focus on developing efficient distributed methods that can work for any compressor satisfying a certain contraction property, which includes both unbiased (after appropriate scaling) and biased compressors such as RandK and TopK. Applied naively, gradient compression introduces errors that either slow down convergence or lead to divergence. A popular technique designed to tackle this issue is error compensation/error feedback. Due to the difficulties associated with analyzing biased compressors, it is not known whether gradient compression with error compensation can be combined with acceleration. In this work, we show for the first time that error compensated gradient compression methods can be accelerated. In particular, we propose and study the error compensated loopless Katyusha method, and establish an accelerated linear convergence rate under standard assumptions. We show through numerical experiments that the proposed method converges with substantially fewer communication rounds than previous error compensated algorithms.
UR - http://www.scopus.com/inward/record.url?scp=85125031329&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85125031329
T3 - Advances in Neural Information Processing Systems
SP - 30401
EP - 30413
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -