TY - JOUR
T1 - Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1)
AU - Salinas, Octavio
AU - Ma, Xiaohua
AU - Litwiller, Eric
AU - Pinnau, Ingo
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/1/5
Y1 - 2016/1/5
N2 - Fine-tuning the microporosity of PIM-1 by heat treatment was applied to develop a suitable carbon molecular sieve membrane for ethylene/ethane separation. Pristine PIM-1 films were heated from 400 to 800 °C under inert N2 atmosphere (< 2 ppm O2). At 400 °C, PIM-1 self-cross-linked and developed polar carbonyl and hydroxyl groups due to partial dioxane splitting in the polymer backbone. Significant degradation occurred at 600 °C due to carbonization of PIM-1 and resulted in 30% increase in cumulative surface area compared to its cross-linked predecessor. In addition, PIM-1-based CMS developed smaller ultramicropores with increasing pyrolysis temperature, which enhanced their molecular sieving capability by restricted diffusion of ethylene and ethane through the matrix due to microstructural carbon densification. Consequently, the pure-gas ethylene permeability (measured at 35 °C and 2 bar) decreased from 1600 Barrer for the pristine PIM-1 to 1.3 Barrer for the amorphous carbon generated at 800 °C, whereas the ethylene/ethane pure-gas selectivity increased significantly from 1.8 to 13.
AB - Fine-tuning the microporosity of PIM-1 by heat treatment was applied to develop a suitable carbon molecular sieve membrane for ethylene/ethane separation. Pristine PIM-1 films were heated from 400 to 800 °C under inert N2 atmosphere (< 2 ppm O2). At 400 °C, PIM-1 self-cross-linked and developed polar carbonyl and hydroxyl groups due to partial dioxane splitting in the polymer backbone. Significant degradation occurred at 600 °C due to carbonization of PIM-1 and resulted in 30% increase in cumulative surface area compared to its cross-linked predecessor. In addition, PIM-1-based CMS developed smaller ultramicropores with increasing pyrolysis temperature, which enhanced their molecular sieving capability by restricted diffusion of ethylene and ethane through the matrix due to microstructural carbon densification. Consequently, the pure-gas ethylene permeability (measured at 35 °C and 2 bar) decreased from 1600 Barrer for the pristine PIM-1 to 1.3 Barrer for the amorphous carbon generated at 800 °C, whereas the ethylene/ethane pure-gas selectivity increased significantly from 1.8 to 13.
UR - http://hdl.handle.net/10754/593144
UR - http://linkinghub.elsevier.com/retrieve/pii/S0376738815304002
UR - http://www.scopus.com/inward/record.url?scp=84955254249&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2015.12.052
DO - 10.1016/j.memsci.2015.12.052
M3 - Article
SN - 0376-7388
VL - 504
SP - 133
EP - 140
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -