TY - JOUR
T1 - Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer
AU - Zhou, Kun
AU - Jiang, Xiao
AU - Sun, Ke
AU - He, Zhu
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Project supported by the National Natural Science Foundation of China (Nos. 11402179 and 11572274)
PY - 2016/9/23
Y1 - 2016/9/23
N2 - The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.
AB - The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.
UR - http://hdl.handle.net/10754/622195
UR - http://link.springer.com/article/10.1007%2Fs10483-016-2134-9
UR - http://www.scopus.com/inward/record.url?scp=84988690015&partnerID=8YFLogxK
U2 - 10.1007/s10483-016-2134-9
DO - 10.1007/s10483-016-2134-9
M3 - Article
SN - 0253-4827
VL - 37
SP - 1305
EP - 1314
JO - Applied Mathematics and Mechanics
JF - Applied Mathematics and Mechanics
IS - 10
ER -