TY - GEN
T1 - Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea
AU - Tiwari, Surya Prakash
AU - Yellepeddi, Sarma B.
AU - Jones, Burton
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This study is supported by the King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi
Arabia. We thank the operator, master, and crew of R/V Thuwal. We would also thanks to M. Ouhssain, B. Kurten, and
several other colleagues provided significant help during field work.
PY - 2016/5/7
Y1 - 2016/5/7
N2 - Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
AB - Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
UR - http://hdl.handle.net/10754/618016
UR - http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2222823
UR - http://www.scopus.com/inward/record.url?scp=85006850927&partnerID=8YFLogxK
U2 - 10.1117/12.2222823
DO - 10.1117/12.2222823
M3 - Conference contribution
SN - 9781510601192
BT - Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges
PB - SPIE-Intl Soc Optical Eng
ER -