TY - JOUR
T1 - Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells
AU - Tenca, Alberto
AU - Cusick, Roland D.
AU - Schievano, Andrea
AU - Oberti, Roberto
AU - Logan, Bruce E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: The authors thank Air Products and Chemicals, Inc. for providing wastewater samples. This research was supported by Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/2
Y1 - 2013/2
N2 - Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8-1.8 m3/m3-d), and COD removal rates (1.8-2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1-3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of -0.7 - 1.2 kWh/kg-COD using MoS 2 or Pt cathodes, and -3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
AB - Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8-1.8 m3/m3-d), and COD removal rates (1.8-2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1-3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of -0.7 - 1.2 kWh/kg-COD using MoS 2 or Pt cathodes, and -3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
UR - http://hdl.handle.net/10754/598249
UR - https://linkinghub.elsevier.com/retrieve/pii/S036031991202592X
UR - http://www.scopus.com/inward/record.url?scp=84872613454&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2012.11.103
DO - 10.1016/j.ijhydene.2012.11.103
M3 - Article
SN - 0360-3199
VL - 38
SP - 1859
EP - 1865
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 4
ER -