TY - JOUR
T1 - Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion
AU - Humayun, Muhammad
AU - Qu, Yang
AU - Raziq, Fazal
AU - Yan, Rui
AU - Li, Zhijun
AU - Zhang, Xuliang
AU - Jing, Liqiang
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2016/12/20
Y1 - 2016/12/20
N2 - In this work, TiO2-coupled N-doped porous perovskite-type LaFeO3 nanocomposites as highly efficient, cheap, stable, and visible-light photocatalysts have successfully been prepared via wet chemical processes. It is shown that the amount-optimized nanocomposite exhibits exceptional visible-light photocatalytic activities for 2,4-dichlorophenol (2,4-DCP) degradation by ∼3-time enhancement and for CO2 conversion to fuels by ∼4-time enhancement, compared to the resulting porous LaFeO3 with rather high photoactivity due to its large surface area. It is clearly demonstrated, by means of various experimental data, especially for the ·OH amount evaluation, that the obviously enhanced photoactivities are attributed to the increased specific surface area by introducing pores, to the extended visible-light absorption by doping N to create surface states, and to the promoted charge transfer and separation by coupling TiO2. Moreover, it is confirmed from radical trapping experiments that the photogenerated holes are the predominant oxidants in the photocatalytic degradation of 2,4-DCP. Furthermore, a possible photocatalytic degradation mechanism for 2,4-DCP is proposed mainly based on the resultant crucial intermediate, 2-chlorosuccinic acid with m/z = 153, that readily transform into CO2 and H2O. This work opens up a new feasible route to synthesize visible-light-responsive high-activity perovskite-type nanophotocatalysts for efficient environmental remediation and energy production. (Chemical Equation Presented).
AB - In this work, TiO2-coupled N-doped porous perovskite-type LaFeO3 nanocomposites as highly efficient, cheap, stable, and visible-light photocatalysts have successfully been prepared via wet chemical processes. It is shown that the amount-optimized nanocomposite exhibits exceptional visible-light photocatalytic activities for 2,4-dichlorophenol (2,4-DCP) degradation by ∼3-time enhancement and for CO2 conversion to fuels by ∼4-time enhancement, compared to the resulting porous LaFeO3 with rather high photoactivity due to its large surface area. It is clearly demonstrated, by means of various experimental data, especially for the ·OH amount evaluation, that the obviously enhanced photoactivities are attributed to the increased specific surface area by introducing pores, to the extended visible-light absorption by doping N to create surface states, and to the promoted charge transfer and separation by coupling TiO2. Moreover, it is confirmed from radical trapping experiments that the photogenerated holes are the predominant oxidants in the photocatalytic degradation of 2,4-DCP. Furthermore, a possible photocatalytic degradation mechanism for 2,4-DCP is proposed mainly based on the resultant crucial intermediate, 2-chlorosuccinic acid with m/z = 153, that readily transform into CO2 and H2O. This work opens up a new feasible route to synthesize visible-light-responsive high-activity perovskite-type nanophotocatalysts for efficient environmental remediation and energy production. (Chemical Equation Presented).
UR - https://pubs.acs.org/doi/10.1021/acs.est.6b04958
UR - http://www.scopus.com/inward/record.url?scp=85007048717&partnerID=8YFLogxK
U2 - 10.1021/acs.est.6b04958
DO - 10.1021/acs.est.6b04958
M3 - Article
SN - 1520-5851
VL - 50
SP - 13600
EP - 13610
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 24
ER -