Exciton migration in rigid-rod conjugated polymers: An improved Förster model

Emmanuelle Hennebicq, Geoffrey Pourtois, Gregory D. Scholes, Laura M. Herz, David M. Russell, Carlos Silva, Sepas Setayesh, Andrew C. Grimsdale, Klaus Müllen, Jean Luc Brédas, David Beljonne*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

257 Scopus citations

Abstract

The dynamics of interchain and intrachain excitation energy transfer taking place in a polyindenofluorene endcapped with perylene derivatives is explored by means of ultrafast spectroscopy combined with correlated quantum-chemical calculations. The experimental data indicate faster exciton migration in films with respect to solution as a result of the emergence of efficient channels involving hopping between chains in close contact. These findings are supported by theoretical simulations based on an improved Förster model. Within this model, the rates are expressed according to the Fermi golden rule on the basis of (i) electronic couplings that take account of the detailed shape of the excited-state wave functions (through the use of a multicentric monopole expansion) and (ii) spectral overlap factors computed from the simulated acceptor absorption and donor emission spectra with explicit coupling to vibrations (considered within a displaced harmonic oscillator model); inhomogeneity is taken into account by assuming a distribution of chromophores with different conjugation lengths. The calculations predict faster intermolecular energy transfer as a result of larger electronic matrix elements and suggest a two-step mechanism for intrachain energy transfer with exciton hopping along the polymer backbone as the limiting step. Injecting the calculated hopping rates into a set of master equations allows the modeling of the dynamics of exciton transport along the polyindenofluorene chains and yields ensemble-averaged energy-transfer rates in good agreement with experiment.

Original languageEnglish (US)
Pages (from-to)4744-4762
Number of pages19
JournalJournal of the American Chemical Society
Volume127
Issue number13
DOIs
StatePublished - Apr 6 2005
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Exciton migration in rigid-rod conjugated polymers: An improved Förster model'. Together they form a unique fingerprint.

Cite this