TY - JOUR
T1 - Exergy loss characteristics of DME/air and ethanol/air mixtures with temperature and concentration fluctuations under HCCI/SCCI conditions: A DNS study
AU - Zhang, Jiabo
AU - Luong, Minh Bau
AU - Pérez, Francisco E.Hernández
AU - Han, Dong
AU - Im, Hong G.
AU - Huang, Zhen
N1 - KAUST Repository Item: Exported on 2021-01-12
Acknowledgements: The authors would like to thank Prof. Tianfeng Lu for providing the code to leverage between the reduced mechanism and the skeletal mechanism. This work was sponsored by the research funding from King Abdullah University of Science and Technology, and National Natural Science Foundation of China (Grant Nos. 51861135303 and 51776124). This research used the computational resources of the KAUST Supercomputing Laboratory (KSL).
PY - 2020/12/29
Y1 - 2020/12/29
N2 - The exergy loss characteristics of combustion processes under homogeneous-charge compression ignition (HCCI) and stratified-charge compression ignition (SCCI) conditions are numerically investigated by analyzing two-dimensional (2-D) direct numerical simulation (DNS) data. Two fuels, dimethyl ether and ethanol, together with the initial conditions of different mean temperatures, and levels of temperature and concentration fluctuations relevant to HCCI/SCCI conditions were investigated. It is found that the prevalent deflagration mode significantly decreases the maximum exergy loss rates and spreads out the exergy loss rate for all the cases regardless of fuel types, temperature regimes, and temperature and/or concentration fluctuations. The primary irreversible sources of exergy loss are also identified. The chemical reaction is found to be the primary contributor to the total exergy loss, followed by heat conduction and mass diffusion, regardless of the fluctuation levels. It is also found that the relative change of exergy loss due to chemical reactions, ELchemrel, correlates strongly with the heat release fraction by deflagration. The maximum ELchemrel is found to be less than 10%. Chemical pathway analysis reveals that the exergy loss induced by low-temperature reactions, represented by the decomposition of hydroperoxy–alkylperoxy and the H-abstraction reactions of the fuel molecule, is much lower under the SCCI conditions than that under the HCCI conditions. Generally, the dominant reactions contributing to the exergy loss in the high-temperature regime are nearly identical for the HCCI and SCCI combustion. Key reactions, including the H2O2 loop reactions, the reactions of the H2–O2 mechanism, and the conversion reaction of CO to CO2, CO+OH=CO2+H, are found to contribute more than 50% of the total exergy loss. Due to locally higher reactivities by temperature and concentration fluctuations inducing deflagration dominance, these reactions occur at a relatively higher temperature (1600 K–1900 K) compared with the homogeneous zero-dimensional cases (∼1400 K), resulting in a net reduction in exergy loss.
AB - The exergy loss characteristics of combustion processes under homogeneous-charge compression ignition (HCCI) and stratified-charge compression ignition (SCCI) conditions are numerically investigated by analyzing two-dimensional (2-D) direct numerical simulation (DNS) data. Two fuels, dimethyl ether and ethanol, together with the initial conditions of different mean temperatures, and levels of temperature and concentration fluctuations relevant to HCCI/SCCI conditions were investigated. It is found that the prevalent deflagration mode significantly decreases the maximum exergy loss rates and spreads out the exergy loss rate for all the cases regardless of fuel types, temperature regimes, and temperature and/or concentration fluctuations. The primary irreversible sources of exergy loss are also identified. The chemical reaction is found to be the primary contributor to the total exergy loss, followed by heat conduction and mass diffusion, regardless of the fluctuation levels. It is also found that the relative change of exergy loss due to chemical reactions, ELchemrel, correlates strongly with the heat release fraction by deflagration. The maximum ELchemrel is found to be less than 10%. Chemical pathway analysis reveals that the exergy loss induced by low-temperature reactions, represented by the decomposition of hydroperoxy–alkylperoxy and the H-abstraction reactions of the fuel molecule, is much lower under the SCCI conditions than that under the HCCI conditions. Generally, the dominant reactions contributing to the exergy loss in the high-temperature regime are nearly identical for the HCCI and SCCI combustion. Key reactions, including the H2O2 loop reactions, the reactions of the H2–O2 mechanism, and the conversion reaction of CO to CO2, CO+OH=CO2+H, are found to contribute more than 50% of the total exergy loss. Due to locally higher reactivities by temperature and concentration fluctuations inducing deflagration dominance, these reactions occur at a relatively higher temperature (1600 K–1900 K) compared with the homogeneous zero-dimensional cases (∼1400 K), resulting in a net reduction in exergy loss.
UR - http://hdl.handle.net/10754/666865
UR - https://linkinghub.elsevier.com/retrieve/pii/S0010218020305770
UR - http://www.scopus.com/inward/record.url?scp=85098732121&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2020.12.028
DO - 10.1016/j.combustflame.2020.12.028
M3 - Article
SN - 1556-2921
VL - 226
SP - 334
EP - 346
JO - Combustion and Flame
JF - Combustion and Flame
ER -