TY - JOUR
T1 - EXISTENCE AND LOCAL UNIQUENESS FOR 3D SELF-CONSISTENT MULTISCALE MODELS OF FIELD-EFFECT SENSORS
AU - Baumgartner, Stefan
AU - Heitzinger, Clemens
N1 - KAUST Repository Item: Exported on 2021-09-17
Acknowledged KAUST grant number(s): KUK-I1-007-43
Acknowledgements: King Abdullah University of Science & Technology.
PY - 2012
Y1 - 2012
N2 - We present existence and local uniqueness theorems for a system of partial differential equations modeling field-effect nano-sensors. The system consists of the Poisson(-Boltzmann) equation and the drift-diffusion equations coupled with a homogenized boundary layer. The existence proof is based on the Leray-Schauder fixed-point theorem and a maximum principle is used to obtain a-priori estimates for the electric potential, the electron density, and the hole density. Local uniqueness around the equilibrium state is obtained from the implicit-function theorem. Due to the multiscale problem inherent in field-effect biosensors, a homogenized equation for the potential with interface conditions at a surface is used. These interface conditions depend on the surfacecharge density and the dipole-moment density in the boundary layer and still admit existence and local uniqueness of the solution when certain conditions are satisfied. Due to the geometry and the boundary conditions of the physical system, the three-dimensional case must be considered in simulations. Therefore a finite-volume discretization of the 3d self-consistent model was implemented to allow comparison of simulation and measurement. Special considerations regarding the implementation of the interface conditions are discussed so that there is no computational penalty when compared to the problem without interface conditions. Numerical simulation results are presented and very good quantitative agreement with current-voltage characteristics from experimental data of biosensors is found.
AB - We present existence and local uniqueness theorems for a system of partial differential equations modeling field-effect nano-sensors. The system consists of the Poisson(-Boltzmann) equation and the drift-diffusion equations coupled with a homogenized boundary layer. The existence proof is based on the Leray-Schauder fixed-point theorem and a maximum principle is used to obtain a-priori estimates for the electric potential, the electron density, and the hole density. Local uniqueness around the equilibrium state is obtained from the implicit-function theorem. Due to the multiscale problem inherent in field-effect biosensors, a homogenized equation for the potential with interface conditions at a surface is used. These interface conditions depend on the surfacecharge density and the dipole-moment density in the boundary layer and still admit existence and local uniqueness of the solution when certain conditions are satisfied. Due to the geometry and the boundary conditions of the physical system, the three-dimensional case must be considered in simulations. Therefore a finite-volume discretization of the 3d self-consistent model was implemented to allow comparison of simulation and measurement. Special considerations regarding the implementation of the interface conditions are discussed so that there is no computational penalty when compared to the problem without interface conditions. Numerical simulation results are presented and very good quantitative agreement with current-voltage characteristics from experimental data of biosensors is found.
UR - http://hdl.handle.net/10754/671267
UR - http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0010/0002/a013/
UR - http://www.scopus.com/inward/record.url?scp=84855438993&partnerID=8YFLogxK
U2 - 10.4310/cms.2012.v10.n2.a13
DO - 10.4310/cms.2012.v10.n2.a13
M3 - Article
SN - 1539-6746
VL - 10
SP - 693
EP - 716
JO - COMMUNICATIONS IN MATHEMATICAL SCIENCES
JF - COMMUNICATIONS IN MATHEMATICAL SCIENCES
IS - 2
ER -