Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets

Shen Long, Timothy C.W. Lau, Alfonso Chinnici, Zhao Feng Tian, Bassam B. Dally, Graham J. Nathan

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

We present a joint experimental and numerical study of the flowstructure within a cylindrical chamber generated by planar-symmetric isothermal jets, under conditions of relevance to a wide range of practical applications, including the Hybrid Solar Receiver Combustor (HSRC) technology. The HSRC features a cavity with a coverable aperture to allow it to be operated as either a combustion chamber or a solar receiver, with multiple burners to direct a flame into the chamber and a heat exchanger that absorbs the heat from both energy sources. In this study, we assess the cases of two or four inlet jets (simulating the burners), configured in a planar-symmetric arrangement and aligned at an angle to the axis (αj) over the range of 0°-90°, at a constant inlet Reynolds number of ReD = 10 500. The jets were positioned in the same axial plane near the throat and interact with each other and the cavity walls. Measurements obtained with particle image velocimetry were used together with numerical modeling employing Reynolds-averaged Navier-Stokes methods to characterize the large-scale flow field within selected configurations of the device. The results reveal a significant dependence of the mean flow-field on αj and the number of inlet jets (Nj). Four different flow regimes with key distinctive features were identified within the range of αj and Nj considered here. It was also found that αj has a controlling influence on the extent of back-flow through the throat, the turbulence intensity, the flow stability, and the dominant recirculation zone, while Nj has a secondary influence on the turbulence intensity, the flow stability, and the transition between each flow regime.
Original languageEnglish (US)
JournalPhysics of Fluids
Volume29
Issue number10
DOIs
StatePublished - Oct 1 2017
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets'. Together they form a unique fingerprint.

Cite this