TY - JOUR
T1 - Experiments and modeling of the autoignition of methylcyclohexane at high pressure
AU - Weber, Bryan W.
AU - Pitz, William J.
AU - Mehl, Marco
AU - Silke, Emma J.
AU - Davis, Alexander
AU - Sung, Chihjen
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work at the University of Connecticut was supported as part of the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001198. The work at LLNL was supported by U.S. Department of Energy, Office of Vehicle Technologies, program manager Gurpreet Singh and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Alexander Davis acknowledges funding from KAUST CCRC with technical monitoring of Dr. Mani Sarathy.
PY - 2014/8
Y1 - 2014/8
N2 - New experimental data are collected for methyl-cyclohexane (MCH) autoignition in a heated rapid compression machine (RCM). Three mixtures of MCH/O2/N2/Ar at equivalence ratios of φ=0.5, 1.0, and 1.5 are studied and the ignition delays are measured at compressed pressure of 50bar and for compressed temperatures in the range of 690-900K. By keeping the fuel mole fraction in the mixture constant, the order of reactivity, in terms of inverse ignition delay, is measured to be φ=0.5>φ=1.0>φ=1.5, demonstrating the dependence of the ignition delay on oxygen concentration. In addition, an existing model for the combustion of MCH is updated with new reaction rates and pathways, including substantial updates to the low-temperature chemistry. The new model shows good agreement with the overall ignition delays measured in this study, as well as the ignition delays measured previously in the literature using RCMs and shock tubes. This model therefore represents a strong improvement compared to the previous version, which uniformly over-predicted the ignition delays. Chemical kinetic analyses of the updated mechanism are also conducted to help understand the fuel decomposition pathways and the reactions controlling the ignition. Combined, these results and analyses suggest that further investigation of several of the low-temperature fuel decomposition pathways is required. © 2014 The Combustion Institute.
AB - New experimental data are collected for methyl-cyclohexane (MCH) autoignition in a heated rapid compression machine (RCM). Three mixtures of MCH/O2/N2/Ar at equivalence ratios of φ=0.5, 1.0, and 1.5 are studied and the ignition delays are measured at compressed pressure of 50bar and for compressed temperatures in the range of 690-900K. By keeping the fuel mole fraction in the mixture constant, the order of reactivity, in terms of inverse ignition delay, is measured to be φ=0.5>φ=1.0>φ=1.5, demonstrating the dependence of the ignition delay on oxygen concentration. In addition, an existing model for the combustion of MCH is updated with new reaction rates and pathways, including substantial updates to the low-temperature chemistry. The new model shows good agreement with the overall ignition delays measured in this study, as well as the ignition delays measured previously in the literature using RCMs and shock tubes. This model therefore represents a strong improvement compared to the previous version, which uniformly over-predicted the ignition delays. Chemical kinetic analyses of the updated mechanism are also conducted to help understand the fuel decomposition pathways and the reactions controlling the ignition. Combined, these results and analyses suggest that further investigation of several of the low-temperature fuel decomposition pathways is required. © 2014 The Combustion Institute.
UR - http://hdl.handle.net/10754/563673
UR - https://linkinghub.elsevier.com/retrieve/pii/S0010218014000352
UR - http://www.scopus.com/inward/record.url?scp=84902358546&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2014.01.018
DO - 10.1016/j.combustflame.2014.01.018
M3 - Article
SN - 0010-2180
VL - 161
SP - 1972
EP - 1983
JO - Combustion and Flame
JF - Combustion and Flame
IS - 8
ER -