TY - JOUR
T1 - Exploring gasoline oxidation chemistry in jet stirred reactors
AU - Chen, Bingjie
AU - Wang, Zhandong
AU - Wang, Jui-Yang
AU - Wang, Haoyi
AU - Togbé, Casimir
AU - Alonso, Pablo Emmanuel Álvarez
AU - Almalki, Maram M.
AU - Mehl, Marco
AU - Pitz, William J.
AU - Wagnon, Scott W.
AU - Zhang, Kuiwen
AU - Kukkadapu, Goutham
AU - Dagaut, Philippe
AU - Sarathy, Mani
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work is supported by King Abdullah University of Science and Technology (KAUST) and Saudi Aramco under the FUELCOM program, and by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 291049-2G-CSafe. The work at LLNL was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the DOEOffice of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.
PY - 2018/9/28
Y1 - 2018/9/28
N2 - Recent decades have seen increasingly restrictive regulations applied to gasoline engines. Gasoline combustion chemistry must be investigated to achieve a better understanding and control of internal combustion engine efficiency and emissions. In this work, several gasoline fuels, namely the FACE (Fuel for Advanced Combustion Engines) gasolines, were selected as targets for oxidation study in jet-stirred reactors (JSR). The study is facilitated by formulating various gasoline surrogate mixtures with known hydrocarbon compositions to represent the real gasolines. Surrogates included binary mixtures of n-heptane and iso-octane, as well as more complex multi-component mixtures. The oxidation characteristics of FACE gasolines and their surrogates were experimentally examined in JSR-1 and numerically simulated under the following conditions: pressure 1 bar, temperature 500–1050 K, residence time 1.0 and 2.0 s, and two equivalence ratios (ϕ = 0.5 and 1.0). In the high temperature region, all real fuels and surrogates showed similar oxidation behavior, but in the low temperature region, a fuel’s octane number and composition had a significant effect on its JSR oxidation characteristics. Low octane number fuels displayed more low temperature reactivity, while fuels with similar octane number but a larger number of n-alkane components were more reactive. A gasoline surrogate kinetic model was examined with FACE gasoline experiments either measured in JSR-2, or taken from previous work under the following conditions: pressure 10 bar, temperature 530–1200 K, residence time 0.7 s, and three equivalence ratios (ϕ = 0.5, 1.0 and 2.0). Comparison between FACE gasoline experimental results with surrogate model predictions showed good agreement, demonstrating considerable potential for surrogate fuel kinetic modeling in engine simulations.
AB - Recent decades have seen increasingly restrictive regulations applied to gasoline engines. Gasoline combustion chemistry must be investigated to achieve a better understanding and control of internal combustion engine efficiency and emissions. In this work, several gasoline fuels, namely the FACE (Fuel for Advanced Combustion Engines) gasolines, were selected as targets for oxidation study in jet-stirred reactors (JSR). The study is facilitated by formulating various gasoline surrogate mixtures with known hydrocarbon compositions to represent the real gasolines. Surrogates included binary mixtures of n-heptane and iso-octane, as well as more complex multi-component mixtures. The oxidation characteristics of FACE gasolines and their surrogates were experimentally examined in JSR-1 and numerically simulated under the following conditions: pressure 1 bar, temperature 500–1050 K, residence time 1.0 and 2.0 s, and two equivalence ratios (ϕ = 0.5 and 1.0). In the high temperature region, all real fuels and surrogates showed similar oxidation behavior, but in the low temperature region, a fuel’s octane number and composition had a significant effect on its JSR oxidation characteristics. Low octane number fuels displayed more low temperature reactivity, while fuels with similar octane number but a larger number of n-alkane components were more reactive. A gasoline surrogate kinetic model was examined with FACE gasoline experiments either measured in JSR-2, or taken from previous work under the following conditions: pressure 10 bar, temperature 530–1200 K, residence time 0.7 s, and three equivalence ratios (ϕ = 0.5, 1.0 and 2.0). Comparison between FACE gasoline experimental results with surrogate model predictions showed good agreement, demonstrating considerable potential for surrogate fuel kinetic modeling in engine simulations.
UR - http://hdl.handle.net/10754/628838
UR - https://www.sciencedirect.com/science/article/pii/S001623611831593X
UR - http://www.scopus.com/inward/record.url?scp=85054037169&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2018.09.055
DO - 10.1016/j.fuel.2018.09.055
M3 - Article
SN - 0016-2361
VL - 236
SP - 1282
EP - 1292
JO - Fuel
JF - Fuel
ER -