TY - GEN
T1 - Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification
AU - Yi, Kai
AU - Shen, Xiaoqian
AU - Gou, Yunhao
AU - Elhoseiny, Mohamed
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - The main question we address in this paper is how to scale up visual recognition of unseen classes, also known as zero-shot learning, to tens of thousands of categories as in the ImageNet-21K benchmark. At this scale, especially with many fine-grained categories included in ImageNet-21K, it is critical to learn quality visual semantic representations that are discriminative enough to recognize unseen classes and distinguish them from seen ones. We propose a Hierarchical Graphical knowledge Representation framework for the confidence-based classification method, dubbed as HGR-Net. Our experimental results demonstrate that HGR-Net can grasp class inheritance relations by utilizing hierarchical conceptual knowledge. Our method significantly outperformed all existing techniques, boosting the performance by 7% compared to the runner-up approach on the ImageNet-21K benchmark. We show that HGR-Net is learning-efficient in few-shot scenarios. We also analyzed our method on smaller datasets like ImageNet-21K-P, 2-hops and 3-hops, demonstrating its generalization ability. Our benchmark and code are available at https://kaiyi.me/p/hgrnet.html.
AB - The main question we address in this paper is how to scale up visual recognition of unseen classes, also known as zero-shot learning, to tens of thousands of categories as in the ImageNet-21K benchmark. At this scale, especially with many fine-grained categories included in ImageNet-21K, it is critical to learn quality visual semantic representations that are discriminative enough to recognize unseen classes and distinguish them from seen ones. We propose a Hierarchical Graphical knowledge Representation framework for the confidence-based classification method, dubbed as HGR-Net. Our experimental results demonstrate that HGR-Net can grasp class inheritance relations by utilizing hierarchical conceptual knowledge. Our method significantly outperformed all existing techniques, boosting the performance by 7% compared to the runner-up approach on the ImageNet-21K benchmark. We show that HGR-Net is learning-efficient in few-shot scenarios. We also analyzed our method on smaller datasets like ImageNet-21K-P, 2-hops and 3-hops, demonstrating its generalization ability. Our benchmark and code are available at https://kaiyi.me/p/hgrnet.html.
KW - Large-scale knowledge transfer
KW - Semantic hierarchical graph
KW - Vision and language
KW - Zero-shot learning
UR - http://www.scopus.com/inward/record.url?scp=85144579377&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-20044-1_7
DO - 10.1007/978-3-031-20044-1_7
M3 - Conference contribution
AN - SCOPUS:85144579377
SN - 9783031200434
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 116
EP - 132
BT - Computer Vision – ECCV 2022 - 17th European Conference, Proceedings
A2 - Avidan, Shai
A2 - Brostow, Gabriel
A2 - Cissé, Moustapha
A2 - Farinella, Giovanni Maria
A2 - Hassner, Tal
PB - Springer Science and Business Media Deutschland GmbH
T2 - 17th European Conference on Computer Vision, ECCV 2022
Y2 - 23 October 2022 through 27 October 2022
ER -