TY - JOUR
T1 - External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments
AU - Sherif, A.
AU - El-Zafarany, A.
AU - Arafa, R.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): C0015
Acknowledgements: This publication is based on work supported by Award No. C0015 made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/9
Y1 - 2012/9
N2 - In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a thickness that provides selective shading properties. Perforated wooden solar screens were traditionally used for windows shading. Developing modern types of these shading systems can lead to significant energy savings. The paper addresses the influence of changing the perforation percentage and depth of these screens on the annual energy loads, hence defining the optimum depth/perforation configurations for various window orientations. Series of experiments were performed using the EnergyPlus simulation software for a typical residential building in the Kharga Oasis, located in the Egyptian desert. A range of perforation percentages and depths were tested. Conclusions prove that external fixed deep perforated solar screens could effectively achieve energy savings up to 30% of the total energy consumption in the West and South orientations. Optimum range of depths and perforation percentages were recommended. These are: 80-90% perforation rate and 1:1 depth/opening width ratio. These lighter and deeper solar screen configurations were found to be more efficient in energy consumption in comparison with the traditional ones. © 2012 Elsevier B.V. All rights reserved.
AB - In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a thickness that provides selective shading properties. Perforated wooden solar screens were traditionally used for windows shading. Developing modern types of these shading systems can lead to significant energy savings. The paper addresses the influence of changing the perforation percentage and depth of these screens on the annual energy loads, hence defining the optimum depth/perforation configurations for various window orientations. Series of experiments were performed using the EnergyPlus simulation software for a typical residential building in the Kharga Oasis, located in the Egyptian desert. A range of perforation percentages and depths were tested. Conclusions prove that external fixed deep perforated solar screens could effectively achieve energy savings up to 30% of the total energy consumption in the West and South orientations. Optimum range of depths and perforation percentages were recommended. These are: 80-90% perforation rate and 1:1 depth/opening width ratio. These lighter and deeper solar screen configurations were found to be more efficient in energy consumption in comparison with the traditional ones. © 2012 Elsevier B.V. All rights reserved.
UR - http://hdl.handle.net/10754/598298
UR - https://linkinghub.elsevier.com/retrieve/pii/S0378778812002800
UR - http://www.scopus.com/inward/record.url?scp=84862674892&partnerID=8YFLogxK
U2 - 10.1016/j.enbuild.2012.05.025
DO - 10.1016/j.enbuild.2012.05.025
M3 - Article
SN - 0378-7788
VL - 52
SP - 1
EP - 10
JO - Energy and Buildings
JF - Energy and Buildings
ER -